
DESIGN PARAMETERS FOR DISTRIBUTED PIM MEMORY SYSTEMS

A Thesis

Submitted to the Graduate School

of the University of Notre Dame

in Partial Fulfillment of the Requirements

for the Degree of

Masters of Science

in Computer Science and Engineering

by

Richard Cameron Murphy, B.S., B.A.

Peter M. Kogge, Director

Department of Computer Science and Engineering

Notre Dame, Indiana

April 2000

DESIGN PARAMETERS FOR DISTRIBUTED PIM MEMORY SYSTEMS

Abstract

by

Richard Cameron Murphy

Processing-In-Memory (PIM) circumvents the von Neumann bottleneck by com-

bining logic and memory (typically DRAM) on a single die. This work examines

the memory system parameters for constructing PIM based computers which are

capable of solving significant problems. Using several data intensive benchmarks,

simulations demonstrate that PIMs are capable of supporting enough data to be

multicomputer nodes. Additionally, the results show that even data intensive code

exhibits a large amount of internal spatial locality. A mobile thread execution model

is presented that takes advantage of the tremendous amount of internal bandwidth

available on a given PIM node and the locality exhibited by the application. Com-

munication and other overhead is also discussed.

For my parents, Maura and Lester Murphy.

Sir Winston Churchill said, “the empires of the future are the empires of the

mind.” Thank you for founding my empire.

ii

CONTENTS

FIGURES . vii

TABLES . xiv

ACKNOWLEDGEMENTS . xv

CHAPTER 1: INTRODUCTION . 1
1.1 The Problem . 1

1.1.1 Properties of Distributed Memory Systems 4
1.2 PIM Model . 5
1.3 Thesis Organization . 7

CHAPTER 2: A BRIEF REVIEW OF THE STATE OF THE ART 9
2.1 Processing-In-Memory (PIM) . 9

2.1.1 Memory Layout: The Key to Big Bandwidth 11
2.2 Parcels . 12
2.3 Shade . 13
2.4 DSMs and SMPs . 14
2.5 NUMA and CC-NUMA Architectures 15
2.6 COMA Machines . 17
2.7 Active Messages and the J-Machine 19
2.8 Active Pages . 20
2.9 Tera MTA . 20
2.10 Relevance to PIM . 22

CHAPTER 3: THE BENCHMARKS . 24
3.1 Benchmarks Under Consideration . 25
3.2 DIS Data Management . 26
3.3 DIS FFT . 27
3.4 DIS Method of Moments . 27
3.5 DIS Image Understanding . 28
3.6 DIS Simulated SAR Ray Tracing . 28
3.7 Molecular Dynamics Simulation . 29
3.8 General Memory Access Characteristics 30
3.9 Row Buffer Re-usage . 31

iii

3.10 Conclusions . 33

CHAPTER 4: SPATIAL OVERHEAD . 34
4.1 Address Space Assumptions . 34
4.2 “Centralized” Page Space Overhead 35

4.2.1 Directory Based Page Table Overhead 36
4.2.2 Single Node Page Table Overhead 36

4.3 Cache Overhead . 37
4.3.1 256 bit Direct Mapped . 39
4.3.2 2 K-bit Direct Mapped . 39
4.3.3 4-way Set Associative . 40
4.3.4 8-way Set Associative . 40

4.4 Conclusions . 40

CHAPTER 5: WORKING SET CRITICAL MASS 42
5.1 Experimentation . 44

5.1.1 Experimental Configurations 45
5.1.2 Additional Validation . 45
5.1.3 Assumptions . 46

5.2 Metrics . 47
5.3 Interpreting the Results . 49

5.3.1 Miss Rates . 49
5.4 Cache Results . 49

5.4.1 DIS Data Management . 49
5.4.2 DIS FFT . 50
5.4.3 DIS Method of Moments . 51
5.4.4 DIS Image Understanding . 53
5.4.5 DIS Ray Tracing . 53
5.4.6 Molecular Dynamics Simulation 54

5.5 Page Results . 54
5.5.1 Code and Stack Pages . 56
5.5.2 True Data Pages . 57

5.6 Summary of Results . 62
5.7 Conclusions . 63

CHAPTER 6: COMMUNICATION AND DATA DISTRIBUTION 66
6.1 Parallel Execution Models . 68
6.2 Data Placement . 69
6.3 Communication Costs . 70

6.3.1 Interconnection Networks . 72
6.4 Experimental Configurations . 73
6.5 Experimentation . 75
6.6 Run Length Data . 76

6.6.1 DIS Data Management . 76
6.6.2 DIS FFT . 77
6.6.3 DIS Method of Moments . 78

iv

6.6.4 DIS Image Understanding . 80
6.6.5 DIS Ray Tracing . 81
6.6.6 DIS Molecular Dynamics . 82

6.7 Communication Radius Data . 83
6.8 Individual Network Performance . 86
6.9 Memory Space . 87

6.9.1 Ring . 87
6.9.2 Mesh . 89
6.9.3 Hypercube . 92

6.10 Communication Overhead . 92
6.11 Local Translation Mechanisms . 93
6.12 Conclusions . 96

CHAPTER 7: CODE, THREADS, CONTEXT, AND CARPET BAGS 99
7.1 Carpet Bag Caches . 100

7.1.1 Implementation . 100
7.1.2 Synchronization . 103

7.2 Experimentation . 104
7.3 Results . 105

7.3.1 DIS Data Management . 105
7.3.2 DIS FFT . 106
7.3.3 DIS Method of Moments . 107
7.3.4 DIS Image Understanding . 108
7.3.5 Molecular Dynamics Simulation 109

7.4 Conclusions . 111

CHAPTER 8: CONCLUSIONS . 112
8.1 Results . 112
8.2 A Design Point . 114

8.2.1 Thread Buffers and Their Size 115
8.3 Global Page Area . 116
8.4 Future Work . 117

APPENDIX A: BENCHMARK INSTRUCTION FREQUENCIES 119

APPENDIX B: UNABRIDGED WORKING SET CIPD (Ψ(L)) RESULTS . . 134
B.1 DIS Data Management . 134

B.1.1 Page Configurations . 134
B.1.2 Cache Configurations . 139

B.2 DIS FFT . 143
B.2.1 Page Configurations . 143
B.2.2 Cache Configurations . 148

B.3 DIS Method of Moments . 152
B.3.1 Page Configurations . 152
B.3.2 Cache Configurations . 157

v

B.4 DIS Image Understanding . 161
B.4.1 Page Configurations . 161
B.4.2 Cache Configurations . 166

B.5 DIS Ray Tracing . 170
B.5.1 Page Configurations . 170
B.5.2 Cache Configurations . 175

B.6 Molecular Dynamics Simulation . 179
B.6.1 Page Configurations . 179
B.6.2 Cache Configurations . 184

APPENDIX C: UNABRIDGED WORKING SET PAGE MISS RATE RE-
SULTS . 188
C.1 DIS Data Management . 188
C.2 DIS FFT . 190
C.3 DIS Method of Moments . 191
C.4 DIS Image Understanding . 192
C.5 DIS Ray Tracing . 193
C.6 Molecular Dynamics Simulation . 194

APPENDIX D: UNABRIDGED REMOTE NAME TRANSLATION MECH-
ANISM RESULTS . 195

APPENDIX E: UNABRIDGED CARPET BAG CACHE MISS RATE RE-
SULTS FOR THE IMAGE UNDERSTANDING BENCHMARK 198

BIBLIOGRAPHY . 201

vi

FIGURES

1.1 Types of PIM Systems . 6

2.1 Typical PIM Memory Layout . 11

2.2 Shade Simulations . 13

2.3 DSM and SMP Systems . 15

2.4 A Typical CC-NUMA implementation 15

2.5 A CC-NUMA machine during an update. 17

2.6 A Typical COMA Machine . 18

2.7 A COMA machine during an update. 18

2.8 Active Messages . 19

2.9 Types of Processor and Memory Distributions 21

3.1 EM Scattering . 28

3.2 Image Understanding . 29

3.3 Ray Tracing . 30

3.4 Molecular Dynamics Simulation . 31

4.1 PIM as a Cache and as Paged Memory 35

4.2 PIM Equipped with a Local TLB . 38

5.1 The Working Set and Its Time Evolution 43

5.2 DIS Data Management Cache Size vs. Miss Rate 50

5.3 DIS FFT Cache Size vs. Miss Rate 51

5.4 DIS Method of Moments Cache Size vs. Miss Rate 52

5.5 DIS Method of Moments 1 MB Data Cache CIPD (Ψ) 53

vii

5.6 DIS Method of Moments 1 MB Data Cache CIPD (Ψ) 54

5.7 DIS Image Understanding Cache Size vs. Miss Rate 55

5.8 DIS SAR Ray Tracing Cache Size vs. Miss Rate 56

5.9 Molecular Dynamics Simulation Cache Size vs. Miss Rate 57

5.10 DIS Data Management Code and Stack Miss Rate (4 KB Pages) . . . 58

5.11 DIS Data Management Overall Miss Rate 58

5.12 DIS Data Management 256 KB Page CIPD (Ψ) 59

5.13 DIS FFT 256 KB Page CIPD (Ψ) . 60

5.14 DIS Method of Moments 256 KB Page CIPD (Ψ) 61

5.15 DIS Image Understanding 256 KB Page CIPD (Ψ) 62

5.16 DIS SAR Ray Tracing 256 KB Page CIPD (Ψ) 63

5.17 Molecular Dynamics Simulation 256 KB Page CIPD (Ψ) 64

6.1 PIM as a Multiprocessor . 67

6.2 Four Possible Translation Mechanisms 71

6.3 Example Interconnection Networks 73

6.4 The two types of thread movement 74

6.5 DIS Data Management Results (CIPD, Ψ(L)) 76

6.6 DIS FFT Results (CIPD, Ψ(L)) . 77

6.7 DIS Method of Moments Results (CIPD, Ψ(L)) 79

6.8 DIS Image Understanding Results (CIPD, Ψ(L)) 80

6.9 DIS Ray Tracing Results (CIPD, Ψ(L)) 81

6.10 Molecular Dynamics Results (CIPD, Ψ(L)) 82

6.11 Cumulative Communication Radius Probability Density (without look-
back) . 84

6.12 Cumulative Communication Radius Probability Density (with look-
back) . 85

6.13 Ring CPD (without look-back) . 88

6.14 Ring CPD (with look-back) . 89

6.15 Mesh CPD (without look-back) . 90

viii

6.16 Mesh CPD (with look-back) . 91

6.17 Hypercube CPD (without look-back) 93

6.18 Hypercube CPD (with look-back) . 94

6.19 Aggregate Overhead . 95

6.20 Remote Name Translation Mechanism Miss Rate (2 MB PIM) 95

6.21 Remote Name Translation Mechanism Miss Rate (32 MB PIM) . . . 96

7.1 A Carpet Bag Cache moving from Node A to Node B 100

7.2 General Carpet Bag Cache . 101

7.3 Software Implementation of a Carpet Bag Cache 102

7.4 DIS Data Management Carpet Bag Cache Miss Rate 106

7.5 DIS FFT Carpet Bag Cache Miss Rate 107

7.6 DIS Method of Moments Carpet Bag Cache Miss Rate 108

7.7 DIS Image Understanding Carpet Bag Cache Miss Rate (2 MB) . . . 109

7.8 DIS Image Understanding Carpet Bag Cache Miss Rate (32 MB) . . 110

7.9 Molecular Dynamics Simulation Carpet Bag Cache Miss Rate 110

8.1 Proposed PIM Implementation . 115

B.1 DIS Data Management 4 KB Page CIPD (Ψ) 134

B.2 DIS Data Management 8 KB Page CIPD (Ψ) 135

B.3 DIS Data Management 16 KB Page CIPD (Ψ) 135

B.4 DIS Data Management 32 KB Page CIPD (Ψ) 136

B.5 DIS Data Management 64 KB Page CIPD (Ψ) 136

B.6 DIS Data Management 128 KB Page CIPD (Ψ) 137

B.7 DIS Data Management 256 KB Page CIPD (Ψ) 137

B.8 DIS Data Management 4 KB (Code and Stack) KB Page CIPD (Ψ) . 138

B.9 DIS Data Management 1 MB Data Cache CIPD (Ψ) 139

B.10 DIS Data Management 2 MB Data Cache CIPD (Ψ) 140

B.11 DIS Data Management 4 MB Data Cache CIPD (Ψ) 140

ix

B.12 DIS Data Management 8 MB Data Cache CIPD (Ψ) 141

B.13 DIS Data Management 16 MB Data Cache CIPD (Ψ) 141

B.14 DIS Data Management 32 MB Data Cache CIPD (Ψ) 142

B.15 DIS FFT 4 KB Page CIPD (Ψ) . 143

B.16 DIS FFT 8 KB Page CIPD (Ψ) . 144

B.17 DIS FFT 16 KB Page CIPD (Ψ) . 144

B.18 DIS FFT 32 KB Page CIPD (Ψ) . 145

B.19 DIS FFT 64 KB Page CIPD (Ψ) . 145

B.20 DIS FFT 128 KB Page CIPD (Ψ) . 146

B.21 DIS FFT 256 KB Page CIPD (Ψ) . 146

B.22 DIS FFT 4 KB (Code and Stack) KB Page CIPD (Ψ) 147

B.23 DIS FFT 1 MB Data Cache CIPD (Ψ) 148

B.24 DIS FFT 2 MB Data Cache CIPD (Ψ) 149

B.25 DIS FFT 4 MB Data Cache CIPD (Ψ) 149

B.26 DIS FFT 8 MB Data Cache CIPD (Ψ) 150

B.27 DIS FFT 16 MB Data Cache CIPD (Ψ) 150

B.28 DIS FFT 32 MB Data Cache CIPD (Ψ) 151

B.29 DIS Method of Moments 4 KB Page CIPD (Ψ) 152

B.30 DIS Method of Moments 8 KB Page CIPD (Ψ) 153

B.31 DIS Method of Moments 16 KB Page CIPD (Ψ) 153

B.32 DIS Method of Moments 32 KB Page CIPD (Ψ) 154

B.33 DIS Method of Moments 64 KB Page CIPD (Ψ) 154

B.34 DIS Method of Moments 128 KB Page CIPD (Ψ) 155

B.35 DIS Method of Moments 256 KB Page CIPD (Ψ) 155

B.36 DIS Method of Moments 4 KB (Code and Stack) KB Page CIPD (Ψ) 156

B.37 DIS Method of Moments 1 MB Data Cache CIPD (Ψ) 157

B.38 DIS Method of Moments 2 MB Data Cache CIPD (Ψ) 158

B.39 DIS Method of Moments 4 MB Data Cache CIPD (Ψ) 158

x

B.40 DIS Method of Moments 8 MB Data Cache CIPD (Ψ) 159

B.41 DIS Method of Moments 16 MB Data Cache CIPD (Ψ) 159

B.42 DIS Method of Moments 32 MB Data Cache CIPD (Ψ) 160

B.43 DIS Image Understanding 4 KB Page CIPD (Ψ) 161

B.44 DIS Image Understanding 8 KB Page CIPD (Ψ) 162

B.45 DIS Image Understanding 16 KB Page CIPD (Ψ) 162

B.46 DIS Image Understanding 32 KB Page CIPD (Ψ) 163

B.47 DIS Image Understanding 64 KB Page CIPD (Ψ) 163

B.48 DIS Image Understanding 128 KB Page CIPD (Ψ) 164

B.49 DIS Image Understanding 256 KB Page CIPD (Ψ) 164

B.50 DIS Image Understanding 4 KB (Code and Stack) KB Page CIPD (Ψ)165

B.51 DIS Image Understanding 1 MB Data Cache CIPD (Ψ) 166

B.52 DIS Image Understanding 2 MB Data Cache CIPD (Ψ) 167

B.53 DIS Image Understanding 4 MB Data Cache CIPD (Ψ) 167

B.54 DIS Image Understanding 8 MB Data Cache CIPD (Ψ) 168

B.55 DIS Image Understanding 16 MB Data Cache CIPD (Ψ) 168

B.56 DIS Image Understanding 32 MB Data Cache CIPD (Ψ) 169

B.57 DIS Ray Tracing 4 KB Page CIPD (Ψ) 170

B.58 DIS Ray Tracing 8 KB Page CIPD (Ψ) 171

B.59 DIS Ray Tracing 16 KB Page CIPD (Ψ) 171

B.60 DIS Ray Tracing 32 KB Page CIPD (Ψ) 172

B.61 DIS Ray Tracing 64 KB Page CIPD (Ψ) 172

B.62 DIS Ray Tracing 128 KB Page CIPD (Ψ) 173

B.63 DIS Ray Tracing 256 KB Page CIPD (Ψ) 173

B.64 DIS Ray Tracing 4 KB (Code and Stack) KB Page CIPD (Ψ) 174

B.65 DIS Ray Tracing 1 MB Data Cache CIPD (Ψ) 175

B.66 DIS Ray Tracing 2 MB Data Cache CIPD (Ψ) 176

B.67 DIS Ray Tracing 4 MB Data Cache CIPD (Ψ) 176

xi

B.68 DIS Ray Tracing 8 MB Data Cache CIPD (Ψ) 177

B.69 DIS Ray Tracing 16 MB Data Cache CIPD (Ψ) 177

B.70 DIS Ray Tracing 32 MB Data Cache CIPD (Ψ) 178

B.71 Molecular Dynamics Simulation 4 KB Page CIPD (Ψ) 179

B.72 Molecular Dynamics Simulation 8 KB Page CIPD (Ψ) 180

B.73 Molecular Dynamics Simulation 16 KB Page CIPD (Ψ) 180

B.74 Molecular Dynamics Simulation 32 KB Page CIPD (Ψ) 181

B.75 Molecular Dynamics Simulation 64 KB Page CIPD (Ψ) 181

B.76 Molecular Dynamics Simulation 128 KB Page CIPD (Ψ) 182

B.77 Molecular Dynamics Simulation 256 KB Page CIPD (Ψ) 182

B.78 Molecular Dynamics Simulation 4 KB (Code and Stack) KB Page
CIPD (Ψ) . 183

B.79 Molecular Dynamics Simulation 1 MB Data Cache CIPD (Ψ) 184

B.80 Molecular Dynamics Simulation 2 MB Data Cache CIPD (Ψ) 185

B.81 Molecular Dynamics Simulation 4 MB Data Cache CIPD (Ψ) 185

B.82 Molecular Dynamics Simulation 8 MB Data Cache CIPD (Ψ) 186

B.83 Molecular Dynamics Simulation 16 MB Data Cache CIPD (Ψ) 186

B.84 Molecular Dynamics Simulation 32 MB Data Cache CIPD (Ψ) 187

C.1 DIS Data Management Data Miss Rate 188

C.2 DIS Data Management Code and Stack Miss Rate 189

C.3 DIS FFT Data Miss Rate . 190

C.4 DIS FFT Code and Stack Miss Rate 190

C.5 DIS Method of Moments Data Miss Rate 191

C.6 DIS Method of Moments Code and Stack Miss Rate 191

C.7 DIS Image Understanding Data Miss Rate 192

C.8 DIS SAR Ray Tracing Data Miss Rate 193

C.9 DIS SAR Ray Tracing Code and Stack Miss Rate 193

C.10 Molecular Dynamics Simulation Overall Miss Rate 194

xii

D.1 Remote Name Translation Mechanism Miss Rate (2 MB PIM) 195

D.2 Remote Name Translation Mechanism Miss Rate (4 MB PIM) 196

D.3 Remote Name Translation Mechanism Miss Rate (8 MB PIM) 196

D.4 Remote Name Translation Mechanism Miss Rate (16 MB PIM) . . . 197

D.5 Remote Name Translation Mechanism Miss Rate (32 MB PIM) . . . 197

E.1 DIS Image Understanding Carpet Bag Cache Miss Rate (2 MB) . . . 198

E.2 DIS Image Understanding Carpet Bag Cache Miss Rate (4 MB) . . . 199

E.3 DIS Image Understanding Carpet Bag Cache Miss Rate (8 MB) . . . 199

E.4 DIS Image Understanding Carpet Bag Cache Miss Rate (16 MB) . . 200

E.5 DIS Image Understanding Carpet Bag Cache Miss Rate (32 MB) . . 200

xiii

TABLES

2.1 Semantics of Tera’s Full and Empty Bits 22

3.1 Benchmark Read and Write per Instruction Statistics 32

3.2 Open Row Buffer Cache Hit Rate . 32

3.3 Wide Word Cache Hit Rate . 33

4.1 Total Page Table Overhead . 37

4.2 Local Page Table Overhead (in number of entries) 37

4.3 256 Direct Mapped Cache Overhead 39

4.4 2 K-bit Direct Mapped Cache Overhead 39

4.5 4-way Set Associative Cache Overhead 40

4.6 8-way Set Associative Cache Overhead 40

5.1 Working Set CIPD Mean Values (256 KB pages) 65

5.2 Working Set CIPD Median Values (256 KB pages) 65

A.1 DIS Data Management Instruction Frequency 119

A.2 DIS FFT Instruction Frequency . 122

A.3 DIS Method of Moments Instruction Frequency 124

A.4 DIS Image Understanding Instruction Frequency 126

A.5 DIS SAR Ray Tracing Instruction Frequency 128

A.6 Molecular Dynamics Simulation Instruction Frequency 131

xiv

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Peter Kogge, for his invaluable support

and guidance in my pursuit of this work. At times, it seemed that the distance

to the finish line halved with every revision (meaning it would never be reached)...

thanks for pushing me over the line.

This work would not be possible without my committee, Dr. X. Sharon Hu, Dr.

Jesús Izaguirre, and Dr. Edwin Sha. Their careful review is invaluable.

Dr. Jay Brockman and Dr. Vincent Freeh deserve many thanks for acting as

the sounding board for some of my crazy ideas.

To my friends and colleagues for their continued support, encouragement, and

(most importantly) distraction. In particular, Michael Niemier, Shannon Kuntz, Jeff

Squyres, Ron Garcia, Jucain Butler, Kinis Meyer, and Jason Zawodny all helped

tremendously.

Special kudos go to my good friend, Mr. F. Nicholas Rahaghi. Viva Las Vegas,

Nick.

An early part of this effort was sponsored by the Defense Advanced Research

Projects Agency (DARPA) and Rome Laboratory, Air Force Materiel Command,

USAF, under Cooperative Agreement number F30602-98-2-0180. The U.S. Govern-

ment is authorized to reproduce and distribute for Governmental purposes notwith-

standing any copyright annotation thereon.

The views and conclusions contained herein are those of the author and should

not be interpreted as necessarily representing the official policies or endorsements,

xv

either expressed or implied, of the Defense Advanced Research Projects Agency

(DARPA), Rome Laboratory, or the U.S. Government.

xvi

CHAPTER 1

INTRODUCTION

Processing-in-Memory (PIM) systems (also known as Intelligent RAM [30], embed-

ded RAM, or merged logic and memory) exploit tremendous amounts of memory

bandwidth available for intra-chip communication, and therefore circumvent the von

Neumann bottleneck, by placing logic and memory (typically DRAM) on the same

die. This technology allows for the construction of highly distributed systems, but

with a tremendous latency gap between high speed local memory macro accesses

and remote accesses. Given an environment consisting of multiple PIMs, which in

turn are made up of multiple nodes, memory macros of differing sizes and types,

and various inter-connection schemes, the problem of managing the placement and

movement of data though out the system is extremely complex. In an attempt to

define and carefully balance the parameters of the construction of such a system,

this thesis will enumerate and explore the design space of physically distributed

PIM memory systems, and measure the effectiveness of potential implementations

using realistic benchmarks. This, in turn, will reveal a new data management and

execution model appropriate to PIM systems.

1.1 The Problem

The performance of modern computer systems is primarily determined by that of

the memory hierarchy. The origin of this problem, and the cause of its continuous

1

increase, is the steady increase in the latency gap between processor and memory

speeds. In fact, modern architectures go to Herculean efforts to circumvent the

problem of accessing comparatively slow DRAM memories. For example, the next

generation DEC Alpha (known as EV7), which is projected to run at 1 GHz, requires

a startling 1.5 MB 6-way set associative level-2 cache on chip to provide the 16 GB/s

bandwidth necessary for the processor to sustain performance [18]. Future Alpha

and SPARC systems will both include 8 MB L2 caches on chip. These statistics do

not take into account the memory overhead (in terms of tag and validity bits) for

maintaining such a cache.

PIM seeks to eliminate this problem by providing the bandwidth via on-chip

memory macros (typically DRAM) not to one central CPU but to many smaller ones

distributed throughout the memory. (In fact the above Alpha very nearly qualifies

as a PIM node by itself.) However, rather than providing a highly complex processor

with caching, complicated branch prediction schemes, predication, and all the other

relics of the high latency gap between the processor and memory, the PIM project

seeks to construct simpler machines which take full advantage of the low latency

access to local memory (through the use of simpler models such as vector units and

multi-threaded execution), while providing high performance (potentially into the

petaflop range) by working in tandem with other PIMs as part of a larger system.

In this model, managing the placement, access, and movement of data throughout

the system becomes the crucial element in delivering high performance. While

the problem of accessing local data is easily solved, coping with remote accesses,

which potentially incur many orders of magnitude longer latency than their local

counterpart, becomes the deciding factor in the construction of effective multi-node

PIM systems.

This may seem quite similar to the problem of a von Neumann machine ac-

2

cessing comparatively slow DRAM, however, there are three key differences: first,

the envisaged PIM systems are parallel machines; second, since the processor and

memory are merged, decision making can be made by any node in the system, not

simply a hegemonic processor making dictatorial demands for data; and third, since

multi-threaded execution has the potential for masking long latency remote mem-

ory accesses, PIM systems with such capabilities will be able to sustaining high

throughput for programs which exhibit a high degree of parallelism.

Providing a clean, efficient, and easily programmable memory system on large

PIM arrays is a unique challenge arising from the structure of PIM nodes. Unlike

conventional nodes in a parallel machine, PIM systems are composed of relatively

simple machines which possess small physical address spaces. A modern worksta-

tion, for example, will likely have 1 to 2 orders of magnitude more memory than a

PIM node, as well as all the standard complex support systems necessitated by that

amount of memory. Given this discrepancy, PIM systems potentially consisting of

relatively large memory capacities will require many more nodes than conventional

parallel systems of equal size whose nodes are typically much more powerful (closer

to workstation size). Thus, there are generally two problems faced by the design-

ers of such hierarchies: first, limited local resources reduce the amount of overhead

information each PIM node can support; and second, the large number of nodes

increases the complexity of interconnection networks and synchronization.

This thesis examines the construction of a global memory space for large PIM

arrays with a variety of configurations using real applications to benchmark possible

configurations and more fully enumerate the design space. The Data-Intensive Sys-

tems Benchmark Suite [4], with the addition of a molecular dynamics simulation, is

used to examine access patterns on PIM arrays and determine the parameters for

their construction.

3

1.1.1 Properties of Distributed Memory Systems

Generally speaking, distributed memory systems can be decomposed into at least

two functions: first, a uniform method of naming resources (in this case, memory

and processing resources); and second, a mechanism for communicating between

elements of a heterogeneous memory hierarchy. The uniform naming convention

requires that all names be treated equally. In a typical work station, “names” are

virtual addresses and the hardware and operating system both contribute towards

the translation of memory addresses. Moving data through various levels of the

memory hierarchy also requires significant work by the hardware and operating

system. Furthermore, as these memory systems typically present a flat memory hi-

erarchy to the programmer, transparency and a uniform model of consistency must

be maintained. Typical memory hierarchies (even on uniprocessor workstations)

are extremely complex, yet that complexity is transparent to the programmer, in

that the address space is still viewed as a large flat array. Furthermore, even though

multiple nodes may be accessing the same piece of data, consistency, or the semanti-

cally correct value for that data as a function of time, must be maintained. Caches,

for example, will provide transparency among hardware elements, while the operat-

ing system will typically require that pages which are to be accessed be present in

physical memory (and not in secondary storage). From this simple discussion one

can conclude that it is the function of a memory system to provide transparency

and consistency. Typically such systems further provide protection from malicious

or accidental access.

In a parallel environment, however, there is one further dimension which must

be addressed, namely communication. Communication in a parallel environment

can occur implicitly, as in the case of a memory request in NUMA, CC-NUMA, or

COMA architecture, or explicitly as in the case of MPI, PVM, or Active Messages.

4

PIM systems should support both models of operations, however they are unlikely

to support a strict consistency model, in which rigid semantics for the sharing and

updating of data are supported, due to the complexity of communication required

to update all copies of the data.

Given that there is a huge discrepancy between local and remote memory ac-

cesses (either implicitly or explicitly generated), this thesis will also examine the

possibilities of masking the latency of such communication through the use of various

techniques – most importantly architectural support for dynamic thread migration.

1.2 PIM Model

Assumptions regarding the configuration of the PIM arrays to be discussed are

minimal. Since the purpose of this work is to determine the characteristics of the

memory system of such an array, it is essential not to limit possible options by

generating a large set of assumptions prior to experimentation. Thus, each PIM

array will consist of multiple chips connected through an arbitrary interconnection

network. Each chip will consist of multiple nodes (such as 4), which will, in turn,

be capable of fast on-chip communication. Each node will have both processing

resources and memory. The memory macros and processing resources for each node

will be assumed to be fabricated using currently existing technology. A memory

macro size of 2-32 MB per node will be assumed. The ND ASAP ISA [27] will be

the assumed Instruction Set. Memory is assumed to be laid out in in the standard

fashion (see Section 2.1.1, and Figure 2.1) – it consists of rows and columns. When

an address is presented to the memory system, a row is read out, which is then

presented to sense amplifiers and column decoders.

A PIM system could come in several forms (see figure 1.1): first, it could be an

array consisting entirely of PIM nodes; second, it could be (a relatively small array)

5

PIM PIM PIM PIM

PIM PIM PIM PIM

PIM PIM PIM PIM

PIM PIM PIM PIM

PIM PIM PIM PIM

PIM PIM PIM PIM

PIM PIM PIM PIM

PIM PIM PIM PIM

MEMORY

HIERARCHY OTHER PROCESSORS

PIM

PIM

PIM

CONVENTIONAL
CPU

A HOMOGENIOUS PIM ARRAY PIM AS THE MEMORY FOR A CONVENTIONAL SYSTEM

PIM AS PART OF A LARGE MEMORY HIERARCHY

Figure 1.1. Types of PIM Systems

which constituted part of the memory hierarchy of a conventional processor; or third,

it could constitute one or more levels of a hugely complex parallel machine’s memory

hierarchy. Given the diverging assumptions necessitated by any of the choices above,

this work will concentrate on inter-PIM memory addressing and communication,

rather than the interface between the array and another portion of a larger machine.

Generally speaking PIM arrays can be heterogeneous – they could consist of

SRAM PIMs, DRAM PIMs, or PIMs of different generations with differing memory

macro sizes and speeds. The analysis resulting from this work will be independent of

these facts. Since the purpose of PIM is to utilize the on-chip bandwidth of a local

memory macro (hence eliminating the von Neumann bottleneck), emphasis will be

placed on the ability to effectively use local memory. Since a full row of memory

(approximately 2 K-bits) must be read during each memory access, and this full

row can be reused at low cost, additional experimentation will be conducted in the

6

effective re-use of these rows. Thus, the question of data placement will consist

of several parts: placement within the array; placement within a given node; and

placement within an “open row” and potentially even a “wide word” (256 bits).

The PIM communication mechanism is assumed to be a parcel. Parcels, as

defined in [22] have the capability both of simple message-based communication,

and of thread initiation (similar to active messages [36]). Since the system is multi-

threaded, special attention will be made in regard to code access and loading, as

well as the potential for covering memory access latency with threads. It should be

noted that because parcels can contain the state of a running thread, they are not

merely a light-weight RPC.

1.3 Thesis Organization

Chapter 2 will review the State of the Art in memory systems and inter-node com-

munication for a variety of architectures. This will provide the necessary background

for the analysis to come in later sections. Chapter 3 will review the benchmarks in

detail. Their general properties, such as the types of memory accesses made (data,

stack, or instruction fetch), row-buffer reuse and the treatment of the stack will be

discussed, as well as the composition of a thread’s context. Chapter 4 will review

address space complexity in relation to the projected sizes of PIM nodes (particu-

larly the physical address space). It will examine the trade-offs in page and PIM

sizes as well as hardware complexity, paying particular attention to the memory

costs.

Since there are very few constraints on the design of the memory system for this

architecture (other than those previously alluded to – small simple nodes joined to

large heterogeneous arrays which communicate through the use of Parcels), the first

step in defining the design space is to understand thoroughly how data intensive

7

applications behave and what they require of the memory system. In addition

to clearly enumerating the requirements of the memory system, the patterns of

communication and the choices for data placement will be determined. Chapter 5

will examine local data set sizes and data placement in a first cut simulation using

Shade. It will further lay the ground work for future experiments by determining

the core code and data behavior to be analyzed.

Chapter 6 analyzes the communication patterns between a set of nodes during

the “main loop” of the benchmarks. Using the information from Chapter 5, a

data placement scheme will be used to traverse the essential data structures in the

program against several interconnection schemes. The size of intermediate data sets

will also be examined in detail, as well as the impact of moving threads from one

node to another in search of data.

Chapter 7 will further build on the previous work by examining in detail the

treatment of code, particularly in regard to threads and their context. Since the

system will support the free movement of threads from one node to the next, ex-

tensive examination of what constitutes the state of a running thread as it moves

will be made. Using the observations made previously about data placement, com-

munication patterns, and the “context” of a thread, an execution model for mobile

threads or Rolling Snowballs will be constructed. This execution model emphasizes

fine grain threads and code mobility to help hide the latency of remote memory

accesses or transfers from one level of the memory hierarchy to another.

To support the mobile thread environment, the idea of a carpet bag cache will be

presented. This small, mobile cache will be used to effectively capture the context

of a thread so that it can be moved (with low overhead) from one node to another.

Chapter 8 will summarize everything discovered in this work by recommending

an organization for a single PIM node’s memory system.

8

CHAPTER 2

A BRIEF REVIEW OF THE STATE OF THE ART

There is a large body of work devoted to the study of parallel computer architecture,

and parallel memory systems in particular. Rather than focusing on innumerable

implementation details, which are outside the scope of this work, this chapter will

serve as a general guide to the memory schemes available in modern parallel ma-

chines. Additionally, it will provide background on both PIM and the Shade [34]

system for program analysis.

2.1 Processing-In-Memory (PIM)

It has been said that it is more difficult for a man to get into heaven than for a camel

to pass through the eye of a needle (Matthew 19:24). The von Neumann model of

computer architecture has indeed made this a reality for data. Modern processors

require tremendous amounts of data that the memory system is proving increas-

ingly unable to deliver. The core of the problem is in the separate development

of processing and memory technologies – processors, built around logic fabrication

processes emphasize fast switching, while DRAM, which is typically constructed on

a memory fabrication process emphasizes high density. The interconnection mecha-

nism between the two is a relatively narrow bus, which cannot be greatly expanded

due to the physical limit on the number of available pins and the high capacitance of

inter-chip communication. This is known as the von Neumann bottleneck. Commu-

nication between entities on the same chip, however, suffers none of these problems

9

– it is fast, possesses large amounts of potential interconnection, and is relatively low

cost. Recent developments in VLSI technology, such as the trench capacitor created

at IBM, now allows for fabrication facilities which offer both high performance logic

and high density DRAM on the same die.

Processing-in-Memory (PIM, also known as Intelligent RAM [30], embedded

RAM, or merged logic and memory) exploits the development of this fabrication

technology by creating devices which exploit the high bandwidth interconnection

between processor and memory on the same chip. Several proposals for what the

technology could achieve have been made. The Intelligent RAM (I-RAM) project

at Berkeley seeks to place a general purpose core with vector capabilities along with

a memory macro onto a die for embedded applications. Cellular phones, personal

digital assistants, and other devices requiring processing power and small amounts

of memory could benefit tremendously from this type of system, even if one only

considers the potential advantages in power consumption.

Other, such as members of the Galileo group at the University of Wisconsin

[5, 7, 6] see PIM as having tremendous potential for use in standard workstations.

The on-chip memory macro becomes either a part of the memory hierarchy, or when

the memory density becomes high enough, the entire memory hierarchy. Both of

these views see PIM as a technology which fits very definitely into the framework of

contemporary computer architecture, except that increased memory bandwidth is

available. This can be seen in that each group proposes placing a fairly traditional

(and expensive) processor core on the die. Naturally there are some additional

abilities which can be exploited (such as the addition of vector instructions which

can read the larger words available from memory.

The more radical view is that PIM is a technology which enables an entirely new

computing model in which potentially millions of nodes can be utilized in tandem.

10

MEMORY MACRO

ROW
DECODER

ROW

PROCESSOR
(Wide Word Vector Unit)

REGISTER FILE (256-bits wide)

SENSE AMPLIFIERS

OPEN ROW REGISTER (2K-bits)

COLUMN DECODER

COLUMN

REQUESTED VALUE (WIDE WORD)INCOMING
ADDRESS

(WORD LINE)

 (BIT LINE)

Figure 2.1. Typical PIM Memory Layout

2.1.1 Memory Layout: The Key to Big Bandwidth

As discussed previously, the key to overcoming the von Neumann bottleneck is by

combining the processor and memory on the same die. Figure 2.1 shows a typical

PIM layout. The Memory Macro, as in most memory systems, is laid out in rows

and columns. When an address is requested (either for read or write), it is split

into two parts: a row address and a column address. The row address is presented

to a row decoder, and a signal to read out a particular row is generated on the

appropriate word line (as indicated in the figure). The entire row (in this case

2K-bits) is presented to the sense amplifiers which increase the speed of switching

by detecting small changes in the voltage on the bit lines. Each column has an

associated bit line.

The value from the sense amplifiers is presented to the open row register, which

11

contains the full row from memory. At this point, part of the column portion of

the incoming address is used by the column decoder to select which wide word (or

“page”) is read. Since a standard memory part would end here, only a very small

portion of the full row can be presented to the memory bus (due to the limitation

on the number of pins a chip can have). However, PIMs can take a much larger

chunk of the full row (and even the enter full row during some operations). On chip

logic, ie, the processor, is capable of requesting a wide word, in this case 256 bits.

Aside from the fact that a PIM is capable of requesting more data from memory

than a normal processor, it is also capable of requesting that data at a significantly

higher rate. By slightly enhancing the column decoder, multiple accesses to the

same open row can be served at relatively low cost (since the row can be “latched

in” on the first read).

2.2 Parcels

PIMs are assumed to communication through the use of Parcels. Though the seman-

tics of a parcel are not fully defined, they are messages possessing intrinsic meaning

which are directed at named objects. Rather than merely serving as a repository for

data, they carry distinct high-level commands and some of the arguments necessary

to fulfill those commands. Low level Parcels (which may be entirely handled by

hardware) may contain simple memory requests such as: “access the value X and

return it to node K.” Higher level parcels are much more complicated. An example

might be “begin execution of procedure Y with the following arguments and return

the result to node L.” Thus it should be assumed for the rest of this work that a

Parcel is capable of performing both communication and computation, and it may

be generated by the user, run-time system, or hardware for whatever mechanism

may be appropriate.

12

ANALYSIS ENGINE CODE

DATA REPORTING
CODE

SHADE

STATE OF USER
ANALYZED OBJECTS
(CACHES, PAGED
DATA, ETC.)

INSTRUCTION 1

INSTRUCTION N

INSTRUCTION STREAM

MACHINE STATE
(REGISTER FILE
CONTENTS,
CONDITION CODES,
STATUS OF
BRANCH
INSTRUCTIONS, ETC)

USER WRITTEN ANALYZER

OP CODE, REGISTERS USED,
TARGET (EFFECTIVE ADDRESS),
ANNULED STATUS, ETC.

INSTRUCTION INFORMATION:

MACHINE INFORMATION:
(PRIMARILY STATE)

Figure 2.2. Shade Simulations

The fact that Parcels are directed at objects rather than physical nodes implies

that a structure to determine where an object is located is essential to the successful

construction of programs using Parcels.

2.3 Shade

The principle mechanism for benchmarking throughout this thesis will be the use of

the Shade suite [34] developed by Sun Microsystems. The tool allows any SPARC

binary to be analyzed architecturally in detail by providing a simple mechanism for

analysts to write their own code to track the execution of an application. Shade

provides information about every instruction which is executed, as well as the effects

which that instruction had on the SPARC machine simulated.

As Figure 2.2 shows, programs are viewed simply as streams of instructions.

Each simulator written for the purposes of this thesis uses those streams of instruc-

tions, combined with information Shade provides about the state of the machine, to

13

perform accounting for whatever is being tracked.

There are some key things which Shade does not do. It is incapable of tracing

calls to the kernel, and therefore does not include accounting for system overhead.

Generally, for the type of benchmarking performed in this thesis that is advanta-

geous since only user code is of interest. Furthermore, Shade cannot be used to trace

multi-threaded applications. The accounting needed to do so would require exten-

sive kernel modifications. The code analyzed in this thesis is not multi-threaded,

although some estimations as to the performance of threads are made later in the

work. A package to allow Shade to perform accounting on simple run to completion

threads is in the development process, however it was unavailable at the time of this

writing.

2.4 DSMs and SMPs

The memory systems for parallel machines are often classified as either Distributed

Shared Memory (DSM) or Shared Memory Multiprocessors (SMP). Rather than

exhaustively attempt to classify PIM systems, an informal definition for DSMs and

SMPs will be offered. A DSM, such as the Rice TreadMarks system [3], generally

consists of nodes which are tightly coupled with a piece of memory. The memory on

each node is split into local and global parts, and the shared memory portion consists

of the union of the global portion of each node’s memory. Conversely, the nodes of

an SMP, such as the Tera MTA [2], are tightly coupled. There are typically separate

processing and memory nodes all connected via an interconnection network.

PIMs generally fit neither configuration in that while a node consists of both

processing and memory elements (as in a DSM), it is conceivable that the processing

capability of some nodes may consist of nothing more than servicing requests for

memory (as in an SMP).

14

NODE

PROCESSOR MEMORY

NODE

PROCESSOR MEMORY

NODE

PROCESSOR MEMORY

DISTRIBUTED SHARED MEMORY SYSTEMS

SHARED MEMORY MULTIPROCESSORS

 PROCESSOR MEMORY PROCESSOR MEMORY

Figure 2.3. DSM and SMP Systems

2.5 NUMA and CC-NUMA Architectures

Non-Uniform Memory Access (NUMA) machines, as compared to Uniform Memory

Access Machines (UMA), share perhaps the most in common with PIM systems, in

the sense that local accesses occur quickly while remote accesses may encounter long

latencies. The memory access on a PIM is non-uniform in the extreme. As previ-

MEMORY

CACHE

PROCESSOR

MEMORY

CACHE

PROCESSOR

INTERCONNECTION NETWORK

Figure 2.4. A Typical CC-NUMA implementation

15

ously discussed, local accesses are extremely fast while non-local accesses are likely

to be extremely slow. However, this is where the relationship grows increasingly

distant. The Cache Coherent NUMA (CC-NUMA) architectures provide support

for coherency amongst nodes in a NUMA system. That is, a coherency protocol

is defined which ensures that each node contains the semantically correct value of

the data which it is examining, which ensures that a consistent computation always

takes place.

The Stanford FLASH [25] (which is a descendant of the DASH machine [26]) is a

classic example of a CC-NUMA architecture. There is extensive research into both

the coherency protocol used and the methods of efficiently storing information as to

who is accessing a particular piece of data. The Scalable Coherency Interface (SCI)

[21] is an example of a coherency protocol definition (as well as an interconnection

network standard). The SCI uses linked lists to track who is accessing a particular

cache line. Many other protocols use more expensive sparse matrices. It should

be noted, however, that most CC-NUMA organizations do not scale beyond a few

thousand nodes because such extensive information must be kept about data which

is being shared.

Even though CC-NUMA machines track the sharing of data throughout the

system, a given physical address always has a fixed location or home node. Although

many nodes may be sharing a given address, or even updating that address, when

the address is presented to the system it can deterministically be found by referring

to the home node. See Figure 2.4 for details.

Figure 2.5 shows the updating of a piece of data under a CC-NUMA scheme.

The MIT Alewife [1], the Convex Exemplar and the SGI Origin are other exam-

ples of CC-NUMA machines.

16

SHARING

 NODE

SHARING

 NODE

COPY OF DATA X

COPY OF DATA X

SHARING

 NODE

(UPDATING)

UPDATOR OF X

OWNER OF X

(FIXED)

 NODE

HOME

NOTE: X represents a piece of data which must be updated. The HOME NODE
owns X, but is not the node performing the update. The coherency updating pro-
tocol will determine the mechanism for in a semantically correct fashion.

Figure 2.5. A CC-NUMA machine during an update.

2.6 COMA Machines

In contrast to CC-NUMA architectures, the Cache Only Memory Architecture

(COMA) allows for the actual migration of data throughout the system. That is, a

given address does not have a fixed home node, rather the system must determine

the home node by looking in a directory. Since the location of data is free to move

about the system, addressing simply becomes a name space for data, rather than

implying a fixed physical location. When an address is presented to the system, it

is located through the use of a directory, and it may migrate accordingly. It should

be noted that most COMA architectures support Cache Coherent protocols – that

is, there are copies of various pieces of data throughout the system. The primary

difference is that the “original” or “master copy” of data may migrate based on

demand. See figure 2.6.

Figure 2.7 is an example of a COMA machine performing an update.

There are several examples of COMA architectures constructed in hardware or

17

DIRECTORY

CACHE

PROCESSOR

DIRECTORY

CACHE

PROCESSOR

DIRECTORY

CACHE

PROCESSOR

DIRECTORY

CACHE

PROCESSOR

INTERCONNECTION NETWORK

Figure 2.6. A Typical COMA Machine

SHARING

 NODE

COPY OF DATA X

COPY OF DATA X

SHARING

 NODE

OWNER OF X

 NODE

HOME

(MAY MOVE)

DIRECTORY

(2) CONTACT
IS MADE

SHARING

 NODE

(UPDATING)

UPDATOR OF X

(1) THE HOME NODE IS
 DETERMINED

(3) THE UPDATE OCCURS

NOTE: X represents a piece of data which must be updated. The HOME NODE
owns X, but is not the node performing the update. The coherency protocol will
determine the mechanism for in a semantically correct fashion. Repeated accesses
to X may cause its home node to be moved to the accessing node. Additionally, a
directory is required to determine the home node.

Figure 2.7. A COMA machine during an update.

18

HANDLER PAYLOAD

HANDLER INVOKEDNODE

SENDING

ACTIVE MESSAGE RECEIVING

NODE

Figure 2.8. Active Messages

software including the Data Diffusion Machine (DDM) [37], the Princeton SHRIMP

[11], and Simple COMA [32]. While the construction of the directory to allow the

migration of data throughout the system is a complex issue, designers of COMA

architectures focus tremendous amounts of time on the cache coherency protocols

which allow them to compete with the speed of CC-NUMA machines. Unfortu-

nately, it is this coherency protocol more than the directory structure which limit

the scalability of COMA machines.

2.7 Active Messages and the J-Machine

Active Messages [36, 9] seek to maximize the efficiency of parallel machines by min-

imizing the overhead associated with communication and allowing for the masking

of communication latency by overlapping communication and computation. Rather

than a typical message passing system (such as MPI [16]) which provides a mech-

anism of communication between nodes, Active Messages further allows for the

invocation of a handler upon reaching a given node. The purpose of this handler

is two fold: first, it resides in user space, and, given the appropriate system config-

uration, can spare the application from an expensive call to the Kernel to handle

the message; and second, since the handler is invoked upon receipt of the message,

19

systems do not sit idle waiting for communication to occur.

There are several similarities between Active Messages and Parcels. Clearly the

notion of invoking some sort of handler (or in Parcel parlance “command”) is the

same. Parcels, however, are likely to provide increased flexibility in that the the

invoking of a command does not require that the command be pre-resident on a

given node, as is the case with a handler.

This is very similar to work done on the MIT J-Machine [10], which attempted to

create an inexpensive massively parallel computer by supporting primitive mecha-

nism for efficient communication, synchronization and naming of fine grain threads.

2.8 Active Pages

Active Pages [29] (developed at UC Davis) attempt to move beyond the von Neu-

mann bottleneck by shifting data intensive computations away from the main pro-

cessor towards simple PIMs which are constructed from reconfigurable logic. An

Active Page is, therefore, the data and its associated functions. This greatly re-

duces the traffic between the processor and memory for these applications.

2.9 Tera MTA

The Tera Multi-Threaded Architecture (MTA) [2], which the successor of the Hori-

zon [24, 35] is a highly parallel machine which seeks to achieve performance by

emphasizing throughput and parallelism over speed and complexity. The architec-

ture supports simultaneous multi-threaded (SMT), which allows for the interleaving

of code from different threads. A thread is merely a sub-unit of execution with in

a program which shares the same address space as any other thread. Since threads

are largely independent of each other, they can generally be executed in any order

provided that a sufficient mechanism for synchronization exists.

20

PROCESSOR

MEMORY PROCESSOR

MEMORY
INTERCONNECTION
NETWORK

PROCESSOR

PROCESSOR

INTERCONNECTION
NETWORK

MEMORY

MEMORY

(a) A UNIFORMLY DISTRIBUTED CONFIGURATION (b) A "DANCE HALL" CONFIGURATION

Figure 2.9. Types of Processor and Memory Distributions

Each Tera node allows for a zero cost context switch between threads, but is

otherwise quite simple. The instruction set is quite simple, and optimized so as

to eliminate the need for complex pipelining. Instruction encoding is said to be

“horizontal” or moderately VLIW in that each cycle allows for the execution of one

memory reference, one ALU operation, and an additional control or ALU operation.

There is no cache, which eliminates the need for a coherency protocol. Because

thread contexts can be switched at will, all code is executed in order. Rather than

attempting an out of order or speculative execution, the system merely switches

thread whenever there is any event which may cause latency. Most significantly,

each node in the system is capable of supporting enough threads so that the latency

of a memory accessed may be masked. In fact, the Tera hardware and compiler

attempt to trade locality for parallelism whenever possible. All loads are done in

the granularity of on 64-bit word, and memory addresses are distributed throughout

the system to eliminate “hot-spots” (that is consecutive memory addresses are not

next to each other physically). See Figure 2.9.

A thread context consists of one 64-bit stream status word which contains the

thread’s PC and current machine state, 32 64-bit General Purpose Registers, and

8 64-bit Target Registers used in branching. This means that each thread has 2624

bits of context are associated with each thread. There are a maximum of 128 thread

contexts available on each node, which means that the register file must hold a total

of 41 KB of data. This is similar to the size of a data cache on a typical workstation.

21

Table 2.1. Semantics of Tera’s Full and Empty Bits

VALUE Meaning on LOAD Meaning on STORE
0 always read write then set full
1 reserved reserved
2 wait for full and leave full wait for full and leave full
3 wait for full and set empty wait for empty and set full

Note: “fullness” indicates data is located in memory and ready to be accessed while
“emptiness” indicates that there is no data currently available.

The only synchronization mechanism provided for is through the use of memory.

Two “full/empty” bits are provided for each 64-bit word. The semantics of the

full/empty bits are described in Table 2.1.

The Tera Interconnection Network is a high speed 3d toroidal mesh. Tera is

considered an SMP in that there are processing nodes and memory nodes connected

to the network. Both nodes are intermingled to avoid the typical “dance-hall” con-

figuration of most SMPs where processing and memory elements reside on opposite

sides of the network. Again, even in the design of the Interconnection Network,

parallelism is emphasized in the extreme.

The success of the Tera is completely dependent upon the ability of the program-

mer and compiler to provide sufficient parallelism (in the form of enough threads)

to keep the system busy at all times. Since locality is of no importance, a large

number of threads must be available to run on each node.

2.10 Relevance to PIM

It is well known that coherency protocols are expensive. Both CC-COMA and CC-

NUMA architectures are not considered scalable beyond few thousand nodes. The

Multi-Threaded advantages upon which the Tera MTA relies to achieve performance

is indeed provocative since a simple synchronization mechanism can be substituted

22

for a full coherency protocol. Providing sufficient threads on a system of 1,000,000

or more nodes, however, may prove impossible. Multi-threading can still be used to

mask tremendous amounts of latency and provide high node utilization.

Parcels further allow for many of the features of Active Messages. Rather than

being constructed on top of commodity workstations, however, Parcels are inte-

grated with the architecture and multi-threading.

23

CHAPTER 3

THE BENCHMARKS

So assess them to find out their plans, both the successful ones and the
failures. Incite them to action in order to find out the patterns of their
movement and rest.

– Sun Tzu, The Art of War

The benchmarks employed in this work are primarily designed to be difficult for

the memory system to handle. It has long been known that large data sets which

are accessed non-contiguously are the bane of efficient high performance computing.

Because these applications are typically unable to take advantage of memory-access

optimizations, they perform approximately two orders of magnitude below peak

rates [4]. However, this class of applications, which will be hence forth referred to as

data intensive applications, typically form the core of scientific and engineering com-

putation. Examples include high-definition imaging, relational and object-oriented

databases, and circuit simulation. Clearly understanding how these applications

behave on PIM systems is of paramount importance.

This chapter will describe the benchmarks used throughout this work and explain

how they exhibit data intensive behavior. Additionally, it will describe some of

the fundamental properties of the benchmarks, including how memory accesses are

distributed among the code, data, and stack segments. Additionally, the use of a

uniquely PIM optimization will be discussed: using the basic memory constructs

(such as row buffers) as a simple caching mechanism.

24

3.1 Benchmarks Under Consideration

The initial research for this work used more traditional benchmarks such as the

SPEC95 Suite [28]. However, these benchmarks do not typically exhibit the charac-

teristics of data intensive applications. Quite the opposite, the data sets chosen for

these applications have been designed to be quickly captured in the data cache of

a typical workstation so as to emphasize raw computing performance. While they

provided some initial understanding of the overall structure for memory systems,

as well as valuable (independent) validation for many of the simulators written, the

data they produced was largely uninteresting when cast in the light of the data

intensive applications which PIM systems wish to exploit. Thus, beyond their use

as an initial learning tool and a validation system, the overall application set used

in this thesis does not reference any SPEC95 programs.

The next benchmark to be examined was based on a simple database implemen-

tation (by Pedro Diniz at USC’s Information Sciences Institute) servicing a set of

object-oriented data base queries defined in the oo7 benchmark standard [8]. This

provided valuable information into the nature of data-intensive applications, as well

as an additional opportunity to validate the results of simulation. There were pri-

marily two difficulties in using this benchmark: first, the back-end implementation

was somewhat simplistic and unrealistic; and second, the queries are designed for

accessing a CAD document system, and therefore require large amounts of data to

be returned upon completion. While this tests the transfer rate of large blocks in

a database, it exhibits streaming behavior rather than data intensive behavior, and

is therefore less interesting for the purposes of this work.

With the completion of the Data Intensive Systems (DIS) Benchmark Suite

[4], an ideal set of appropriate applications became available. Since the DIS Suite

contained a cleaner object oriented database implementation, oo7 was used only for

25

validation purposes.

One additional benchmark was added, a simple Molecular Dynamics simulation

which is in essence an implementation of the classic N-Body problem using a leapfrog

integrator [19]. This type of simulation is at the core of solving the protein folding

problem, which IBM and others are investigating with tremendous vigor.

3.2 DIS Data Management

The Data Management Benchmark [4] implements a simplified object-oriented database

with an R-Tree indexing scheme [17, 23]. R-Trees have the following properties:

• They are height balanced (ie, all leaves are at the same level);

• If M is the order of the tree, and k is a constant, every node has between kM
and M index entries (except the root);

• A sub tree may contain a hypercube index if that hypercube can cover the
entire subtree;

• The root has at least two children unless it is a leaf.

The system responds to three operations: insert, query, and delete. Queries can

be either key based or content based. All Data Management runs consist of all three

operations (building the tree, querying it, then deleting it), however, only the query

operation is examined during simulation. In this case, an index of approximately 9

MB is created.

The query function is given an R-Tree, a search key, and some non-search key

attributes. It returns all records which are consistent with the search key and the

non-key attributes.

26

3.3 DIS FFT

The Multidimensional Fourier Transform [4] is extensively used in technical fields,

including image processing and digital signal filtering. In fact, a Fast Fourier Trans-

form (FFT) (from the same code based) occurs in both the Ray Tracing and Method

of Moments benchmarks to be described later. The benchmark implements a 3-

dimensional Fourier Transform using an FFT [13] algorithm. It is believed that

the results of a three dimensional system will demonstrate architectural properties

indicative of higher dimensional operations. The input matrices for this benchmark

are approximately 45 MB in total size.

A Discrete Fourier Transform (DFT) in 3 dimensions is defined by the following

equation:

F (x, y, z) =

Z∑

k3=0

Y∑

k2=0

X∑

k1=0

e
2πik3z
Z e

2πik2y
Y e

2πik1x
X f(k1, k2, k3) (3.1)

where f is the complex three-dimensional array of size X x Y x Z and F is the

output Fourier transform of f .

The benchmark uses the FFTW library to choose an appropriately optimized

FFT to solve the DFT given above based on the input data.

3.4 DIS Method of Moments

Method of Moments algorithms are frequency domain techniques for computing

electro-magnetic scattering from complex objects (see Figure 3.1). Typical imple-

mentations employ direct linear solvers, which are of high computational complex-

ity. Consequently, these algorithms can only be reasonably applied to low frequency

problems. Current research has produced faster solvers, however, applying them to

high frequency problems is limited by the speed of main memory because data reuse

is quite low and memory accesses exhibit non-unit stride.

27

COMPLEX OBJECT

PLANE WAVES

Figure 3.1. EM Scattering

The DIS Method of Moments code comes from the Boeing implementation of a

fast iterative linear solver for the Helmholtz equation [12, 15, 14].

The input set requires the creation of several complex data structures constitut-

ing approximately 530 MB of memory.

3.5 DIS Image Understanding

Image Understanding attempts to detect and classify objects within an image. The

implementation requires three phases: first, morphological filtering, in which a spa-

tial filter is created and applied to remove background clutter; second, determination

of the region of interest; and third, feature extraction. In this case, the benchmark

examines a 9MB image for a set of pre-computed objects. See Figure 3.2.

3.6 DIS Simulated SAR Ray Tracing

The simulation of Synthetic Aperture Radar is divided into three parts:

• Geometry Sampling

28

IMAGE TO
IDENTIFY

MATCH
LARGER IMAGE

Figure 3.2. Image Understanding

• Electro-magnetic Scattering Prediction

• Image Formation

Of these, the geometric sampling (which is the actual ray tracing) was chosen

for analysis in this work. While the Image Formation step is also quite computa-

tionally intensive, the geometric sampling step represents a more general problem

and classically exhibits the data intensive behavior under examination. In general,

the problem consists of sending rays out from a fixed point and determining where

they intersect with other objects. See Figure 3.3.

This run considered ray tracing over an 8 MB image representative of a Simulated

SAR problem.

3.7 Molecular Dynamics Simulation

The molecular dynamics simulation is primarily an integration of the equations of

Newtonian Mechanics over a force field. In this particular case, the simulation is of

argon atoms in three dimensions. Since the argon is an inert gas, there are no bonded

forces to be computed (which is less relevant as they are much simpler to compute

29

SOURCE OF RAYS

 OBJECT

(INTERSECTING RAY)

Figure 3.3. Ray Tracing

than the non-bonded forces, and exhibit higher degrees of locality). Furthermore,

there are no electrostatic forces, making the only non-bonded calculation van der

Waals forces. The simulation is significantly more simple than most implementa-

tions. However, the key computations, including a non-bonded force calculation

during the integration, are well exhibited.

The system modeled consists of 125000 atoms at 35 Atmospheres. The data

sets are broken up into a 3-d cube of boxes, each of which interacts with its six

neighbors. The data set size for the primary matrices used during the computation

is approximately 14 MB. Each box contains at most 8 atoms. See Figure 3.4.

Simulation for this benchmark occurs only during the non-bonded force compu-

tation.

3.8 General Memory Access Characteristics

Table 3.1 indicates how many data or stack reads and writes are present for each

benchmark on a per instruction basis. This is equivalent to the probability that for

a given instruction fetch a read or write to the stack or data segments will be made.

30

ARGON
ATOM

2 DIMENSIONAL BOX CONTAINING ATOMS

NOTE: SOME UNDERLYING FORCE FIELD
 IS IN PLACE

Figure 3.4. Molecular Dynamics Simulation

Aside from simply providing information about the instruction mix and likelihood

of various types of reads or writes, the table indicates the degree of data intensive

behavior in that it shows how data much is required to support the computations.

The complete instruction frequencies, computed by Shade’s ifreq program, for

each benchmark can be found in Appendix A.

The memory references frequencies which follow were computed with a Shade

simulation that tracks all memory references a determine if they access the code

segment (during an instruction fetch), or the data or stack segments (during a load

or store). The stack segment is determined by examining the contents of the stack

and frame pointers.

3.9 Row Buffer Re-usage

The PIM memory system (described in Section 2.1.1) has multiple latencies that

are incur ed for local memory accesses. If a local access hits the currently open wide

word, there is zero latency to read perform the read (because the wide word is the

basic unit of memory access for the PIM). Furthermore, if a given memory access

31

Table 3.1. Benchmark Read and Write per Instruction Statistics

PROGRAM DATA R/I DATA W/I STACK R/I STACK W/I
DIS DM 0.0885 0.0263 0.1643 0.0712
DIS FFT 0.1248 0.0757 0.0413 0.0387
DIS MoM 0.0793 0.0173 0.2248 0.0548
DIS IU 0.3478 0.0931 8 ∗ 10−9 0
DIS RAY 0.0389 0.0001 0.2994 0.1276
MD 0.1406 0.0230 0.1749 0.0201

AVERAGE 0.1367 0.0392 0.1508 0.0521

R/I = Reads per instruction executed

W/I = Writes per instruction executed

Table 3.2. Open Row Buffer Cache Hit Rate

BENCHMARK 1 2 4 8
DIS DM 35.2663 % 49.4695 % 66.3240 % 88.4979
DIS RAY 58.8541 % 86.9943 % 87.0956 % 87.1533
DIS IU 22.8428 % 99.6614 % 99.6614 % 99.6614
DIS FFT 33.5064 % 35.5359 % 96.1673 % 97.9683
DIS MoM 54.3057 % 78.1146 % 80.4608 % 88.1132
MD 61.7237 % 83.9452 % 91.1372 % 97.4895

is located in the open row register, only a single cycle is necessary to perform the

read (to transfer the data requested to the processor’s register file). It is only when

the open row register is missed that a full memory access must be performed.

This section asks the question: what if there were several wide words or open

row registers that were used as a cache for data accesses? (Ignoring instruction

fetches and stack accesses.) A Shade simulation was performed to answer that very

question. Every data reference was traced and compared against up to 8 open row

buffer registers (holding 2 K-bits of data each). The same references were compared

to up to 8 wide words (which can hold 256 bits of data each).

Table 3.2 shows the hit rate for the “cache” of up to 8 open row registers.

32

Table 3.3. Wide Word Cache Hit Rate

BENCHMARK 1 2 4 8
DIS DM 32.6029 % 45.3322 % 57.5982 % 77.0256
DIS RAY 41.1372 % 54.2241 % 74.3265 % 74.3538
DIS IU 22.6443 % 97.0264 % 97.0264 % 97.0264
DIS FFT 31.6672 % 32.4657 % 88.8958 % 90.5215
DIS FMM 48.4598 % 65.0872 % 65.7167 % 66.9643
MD 47.6915 % 64.0381 % 71.8059 % 75.8537

Table 3.3 summarizes the wide word hit rate for up to 8 wide words.

These table show that each of the benchmarks shows a high degree of reuse

among both open rows and wide words. In fact, 8 open rows (which is only 2 KB of

data) showed a hit rate of over 87% for every benchmark. Similarly, 8 wide words

(a mere 256 bytes) achieved a reuse rate of over 66% for every benchmark, and in

some cases well into the 90% range.

3.10 Conclusions

Although these benchmarks are data intensive in the sense that they exhibit low

reuse between large data structures, there is a high degree of internal spatial locality.

The reuse of row buffers (or, similarly, adding a small cache between the memory

macro and the processor) is extremely promising and could be achieved at very low

cost. Since there must be at least one row buffer, there is the potential to cut the

cost of 1
3
of memory accesses to only one clock cycle at zero cost.

33

CHAPTER 4

SPATIAL OVERHEAD

Economic action is primarily oriented to the problem of choosing the
end to which a thing shall be applied; technology, to the problem, given
the end, of choosing the appropriate means.

– Max Weber, Economy and Society, Volume I

The experiments in this work evaluate the performance of potential PIM memory

system implementations. During the course of various experiments, the PIM mem-

ory macro will be treated as a cache or as paged memory. This chapter quantifies

the overhead involved with these uses. The measure of overhead, in this case, is the

extra bits needed to construct and manage a cache or paged memory. In the case

of a cache, these bits are contained in the tag and other “extra” information (such

as age) which must be stored with the data value. In the case of a paged space, the

overhead is measured by the size of the page table needed to translate addresses.

4.1 Address Space Assumptions

For the purposes of this chapter, the address space is assumed to be 32-bits. This

allows for 4 GB worth of data to be uniquely addressed. This is the standard size for

an address space on a modern workstation, but is relatively small when considering

the construction of a 1,000,000 node PIM array which may be capable of addressing

a Tera-byte of physical memory or more. However, this accurately represents the

construction of small to medium size PIM systems, and the appropriate scaling

34

PROCESSOR

PAGE TRANSLATION
HARDWARE

PAGE
TABLE

MEMORY MACRO

PROCESSOR

CACHE CONTROL
HARDWARE

TAG BITS DATA

(MEMORY MACRO)

OVERHEAD
MEMORY

OVERHEAD
MEMORY

PIM AS A CACHE PIM AS PAGED MEMORY

Figure 4.1. PIM as a Cache and as Paged Memory

can be done for large machines. Figure 4.1 shows the organization of these two

configurations and where the overhead bits are stored.

4.2 “Centralized” Page Space Overhead

One of the most common methods of translating a name into a physical location

is the use of a page table. The “name” is used to index into the table which yields

the location of that object. PIMs, when combined together, may use such a table

to determine where objects reside both on the node and off the node. This section

will describe the overhead of using a page table to perform address translation.

Assumptions regarding the page table size are minimal. It is assumed that the

entries in the table contain only a validity bit (to determine if the page exists) and

a physical address. It is further assumed that the page table could reside on a single

PIM or be distributed across multiple PIMs. Additionally, a PIM may wish to hold

35

a very small page table locally in order to translate local addresses.

4.2.1 Directory Based Page Table Overhead

Table 4.1 shows the total amount of memory required (system wide) to store page

tables with pages of various sizes. The overhead number represents the size of a

singe copy of the entire page table for a given program (this could be distributed

among many PIMs, or if space allows it could reside on a single PIM). It can easily

be seen that a 4 KB page size is too large to fit within a single node of the smallest

(2 MB) configuration.

The table further shows that a page size of 256 KB, which will be shown to

be reasonable in Chapter 5, requires only a 31 KB page table (about 1.57% of

the smallest proposed PIMs memory space). This small overhead could potentially

allow a PIM node very fast off chip translation. Furthermore, a page table containing

entries the size of the proposed PIMs, particularly as the PIMs get large, contains

so few entries that all the translations could be performed in hardware. These large

page sizes will be shown to be reasonable in Chapters 6 and 7.

4.2.2 Single Node Page Table Overhead

Perhaps a more interesting measure of page table overhead can be seen in Table

4.2 which shows the number of entries required locally for a given node to translate

just its own addresses. Since PIM optimizations are centered around the fast lo-

cal accesses and high local bandwidth available on chip, it is very important that

addresses which access the local memory macro be translated very quickly. If one

were to do such a translation using a TLB to identify local addresses (see Figure

4.2), Table 4.2 represents exactly the number of entries which the TLB would have

to contain to cover the entire memory macro’s address space.

36

Table 4.1. Total Page Table Overhead

Page Size # of Entries Entry Size Total Overhead % of 2 MB PIM
4 KB 1,048,576 21 bits 2,752,512 bytes 131.25
8 KB 524,288 20 bits 1,310,720 bytes 62.5
16 KB 262,144 19 bits 622,592 bytes 29.69
32 KB 131,072 18 bits 294,912 bytes 14.06
64 KB 65,536 17 bits 139,264 bytes 6.64
128 KB 32,768 16 bits 65,536 bytes 3.125
256 KB 16,384 15 bits 30,720 bytes 1.47
512 KB 8,192 14 bits 14,336 bytes 0.68
1 MB 4,096 13 bits 6,656 bytes 0.32
2 MB 2,048 12 bits 3,072 bytes 0.15
4 MB 1,024 11 bits 1,408 bytes 0.067
8 MB 512 10 bits 640 bytes 0.0305
16 MB 256 9 bits 288 bytes 0.0137
32 MB 128 8 bits 128 bytes 0.0061

Table 4.2. Local Page Table Overhead (in number of entries)

PAGE SIZE 2 MB PIM 4 MB 8 MB 16 MB 32 MB
4 KB 512 1,024 2,048 4,096 8,192
8 KB 256 512 1,024 2,048 4,096
16 KB 128 256 512 1,024 2,048
32 KB 64 128 256 512 1,024
64 KB 32 64 128 256 512
128 KB 16 32 64 128 256
256 KB 8 16 32 64 128
512 KB 4 8 16 32 64
1 MB 2 4 8 16 32
2 MB 1 2 4 8 16
4 MB - 1 2 4 8
8 MB - - 1 2 4
16 MB - - - 1 2
32 MB - - - - 1

4.3 Cache Overhead

The overhead presented in this section assumes that the PIM memory macro is used

to arbitrarily cache data (similar to a CC-NUMA configuration). Caches must store

37

MEMORY MACRO

PROCESSOR

LOCAL
TLB

ADDRESS

TRANSLATED
ADDRESS

DATA
OUTPUT STATUS SIGNAL:

 AND WILL APPEAR ON
 THE DATA BUS OR
NO, THE ADDRESS IS A
 REMOTE ADDRESS
 WHICH WILL HAVE TO
 BE RESOLVED

YES, THE ADDRESS IS LOCAL

Figure 4.2. PIM Equipped with a Local TLB

some number of tag bits (as well as other information such as age and validity bits)

for each data item stored in the cache. This overhead information is used to identify

the data and its state. The information which follows represents the size of these

overhead bits for various PIM sizes.

Four cache configurations are considered: a direct mapped cache with a 256 bit

and 2 K-bit data size, as well as a 4-way and 8-way set associate cache, both with 256

bit data sizes. These numbers correspond directly to the size of a wide word, and a

full row. Each of the cache configurations requires a validity bit and a tag. The set

associative caches, which perform eviction based on age, each require 2 additional

bits of aging information. These and the validity bits will be considered “overhead”

bits and are required for each word. The tag bits are accounted for separately.

It is assumed, that regardless of the PIM size, a 32-bit address must be recon-

structed from the tag bits and the index. The overhead presented in this section is

38

on a per node basis – to scale it to the entire memory space, it must be multiplied

by the number of nodes in that space.

4.3.1 256 bit Direct Mapped

The 256 bit direct mapped cache, while obviously requiring more overhead than

any of the page space configurations, still only requires between 9.38% and 10.94%

additional memory on each node depending on the size.

Table 4.3. 256 Direct Mapped Cache Overhead

Cache Data Size Overhead Bits Tag Bits # of Entries Total Overhead
2 MB 1 27 64 K 229,376 bytes
4 MB 1 26 128 K 442,368 bytes
8 MB 1 25 256 K 851,968 bytes
16 MB 1 24 512 K 1,638,400 bytes
32 MB 1 23 1 M 3,145,728 bytes

4.3.2 2 K-bit Direct Mapped

The 2 K-bit direct mapped cache is simply a constant factor improvement over the

256 K-bit direct mapped cache presented above.

Table 4.4. 2 K-bit Direct Mapped Cache Overhead

Cache (Data) Size Overhead Bits Tag Bits # of Entries Total Overhead
2 MB 1 24 8 K 24,576 bytes
4 MB 1 23 16 K 47,104 bytes
8 MB 1 22 32 K 90,112 bytes
16 MB 1 21 64 K 172,032 bytes
32 MB 1 20 128 K 327,680 bytes

39

4.3.3 4-way Set Associative

The 4-way set associative cache requires approximately 1.6% to 2.1% overhead.

Table 4.5. 4-way Set Associative Cache Overhead

Data Size Overhead Bits Tag Bits # of Entries Total Overhead
2 MB 3 18 16K 43,008 bytes
4 MB 3 17 32K 81,920 bytes
8 MB 3 16 64K 155,648 bytes
16 MB 3 15 128K 294,912 bytes
32 MB 3 14 256K 557,056 bytes

4.3.4 8-way Set Associative

Again, a constant factor increase in overhead is provided by increasing from 4-way

to 8-way set associative. In this case, between 0.09% and 1.1% overhead is possible.

Table 4.6. 8-way Set Associative Cache Overhead

Cache (Data) Size Overhead Bitsc Tag Bits # of Entries Total Overhead
2 MB 3 19 8 K 22,528 bytes
4 MB 3 18 16 K 43,008 bytes
8 MB 3 17 32 K 81,920 bytes
16 MB 3 16 64 K 155,648 bytes
32 MB 3 15 128 K 294,912 bytes

4.4 Conclusions

Although these calculations are relatively simple, and the outcomes are not partic-

ularly shocking, it is very important to keep in mind the overhead involved with

configuring a PIM to be either an area for paged data or a cache. It is particularly

important to realize the impact on the local PIM node (ie, in storing just its local

40

page translations, which must be very fast, or in storing the overhead bits required

by a cache).

Page table configurations are obviously add significantly less overhead than do

caches (by 1 to 2 orders of magnitude)

41

CHAPTER 5

WORKING SET CRITICAL MASS

Sometimes a man seeks what he hath lost; and from that place, and
time, wherein he misses it, his mind runs back, from place to place, and
time to time, to find where, and when he had it; that is to say, to find
some certain, and limited time and place in which to begin a method of
seeking. And from thence, his thoughts run over the same places and
times, to find what action, or other occasion might make him loose it.
We call it Remembrance, or Calling to mind; the Latins call it Reminis-
centia, as if it were a Re-conning of our former actions.

– Leviathan, Chapter II, Thomas Hobbes

The goal of a PIM based system is to circumvent the von Neumann bottleneck by

merging logic and memory onto a single die and exploiting the available bandwidth

therein. The limited resources of any near term PIM node make it impossible for a

single node to capture the entire data demands of a large problem, however, such a

node must be able to capture a meaningful subset, which will be termed a working

set. Thus, this chapter will quantify to what extent PIMs of various sizes can capture

a valid working set.

A typical microprocessor captures a working set through the use of a cache.

Because a PIM is capable of supporting significantly more on-chip memory than a

standard microprocessor, a cache is not the only possible mechanism for capturing

a working set. A PIM can also use a page space, which is more typical of how

a workstation manages out of core storage. (Figure 5.1 shows a working set and

both possible representations.) The benchmarks under examination (described in

Chapter 3) were chosen specifically because they represent some of the most difficult

42

NODE
PROCESSOR

NODE
PROCESSOR

PAGE
INFORMATION

TAG DATAPAGES

UNIVERSE

PROGRAM DATA

WORKING SET t1

 t3

tn

t2

(a) NODE MEMORY
 AS A PAGE SPACE

(b) NODE MEMORY AS
 A CACHE

Figure 5.1. The Working Set and Its Time Evolution

for any memory system to handle. They exhibit an irregular stride through main

memory (in the form of large sparse matrix operations or pointer chasing) and have

relatively low reuse. Therefore, the choice of method to use in capturing a working

set (ie, a page space or cache) is unclear.

This chapter will show that a page space is a far superior configuration to a cache,

and that, in fact, caches are largely ineffective for very large local memory sizes.

This will be done by defining a new metric for analysis, the Cumulative Instruction

Probability Density (CIPD), and examining the results of both cache and page

experiments in that light. Because the CIPD provides too much information to

be easily assimilated, the standard Miss Rate metric will also be used to eliminate

trivial cases. The experiments will also show the best configurations for both a large

cache and page space. Most importantly, it will be demonstrated that a 2 MB PIM

can sufficiently capture a meaningful working set, as well as which configurations

above 2 MB yield significant improvement.

43

5.1 Experimentation

For the purposes of the experimentation the local memory macro size is assumed to

be no greater than 32 MB (which represents a very large upper-bound, considering

the size of devices which could currently be implemented is somewhere between 2 and

8 MB). The “success” of the PIM capturing a valid working set is measured in terms

of instruction run lengths between misses to data in the working set; specifically, the

longer the machine can run while hitting only local data, the more successful that

configuration is. A run length is defined as the number of consecutive instructions

which are executed before the contents of the working set are altered by a request

for data not already in the set. In other words, given some subset of data from

the the entire program, the run length represents the length of time (in terms of

actual time or instructions executed) that the program can execute before data from

outside the working set is requested. Additionally, miss rates are presented as an

aggregate over the entire program. See section 5.2 for further information on the

measurement of miss rates and run lengths.

Since the working set which can be contained on one node is too small to rep-

resent the entire program, a mechanism for fetching non-local data and updating

the working set must be defined. In a traditional cache, this is represented by a

replacement policy. When a data request is made to the cache which cannot be

serviced, a miss is said to occur. The cache then requests the appropriate piece

of data from main memory. When the requested data arrives, if the cache is full,

some element within the cache must be ejected so that the new data can enter. The

decision as to which element is ejected is termed the cache’s replacement policy. In

all experiments in this work, the replacement policy is true Least Recently Used

(LRU) [31].

44

5.1.1 Experimental Configurations

In order to simplify the analysis, the experiments are split into two primary con-

figurations: first, a system where the memory macro acts as a page space, which is

defined as an area in memory capable of accepting relatively large contiguous chunks

of memory (4K or greater, in this case), and where the replacement is managed by

software; or, second, as a traditional cache, where relatively small contiguous chunks

of memory (2 K-bits or less) have placement managed by the hardware. Information

regarding the overhead of each of these schemes is discussed in detail in Chapter 4.

In either configuration, it is assumed that the size of the memory is the size of the

data to be stored and does not include any potential overhead information (such as

the tag bits or page tables).

5.1.2 Additional Validation

Since the page space form can be viewed as a large sector cache (and conversely,

the cache can be viewed as a page space with extremely small pages), the fact

that simulators were developed to implement both in different ways allows one

simulation to be used to validate the results of the other. The page space simulation

keeps a sorted list of accesses with the most recently used in the front, while the

cache simulation maintains a traditional cache structure with tag bits and all the

appropriate cache data. Since the results of either experiment, when run on the same

program with equivalent configurations, should be the same, the two simulators

were used to validate each other during the initial stages of development using the

SPEC95 Integer Benchmark Suite [28] as well as small configurations from each of

the DIS benchmarks [4] and oo7 [8]. Further validation was performed using the

cache simulation which is included with the Shade [34] package (cachesim5), which

is capable of handling only small cache configurations.

45

5.1.3 Assumptions

The experiment assumes a “cold” machine upon startup, which means that no

working set has been pre-loaded and the first load or store encountered will generate

a miss. This serves to show the start-up cost of loading the initial working set onto

the node. Throughout the execution of the program, the shade based simulator

tracks all memory references (loads, stores, and instruction fetches), and determines,

on the basis of the appropriate address, which page or cache line is being accessed.

Instruction fetches and data references are easily determined through examining

the opcode of the instruction being executed, however stack references must be

more carefully analyzed. By examining the “growth” of the stack (as measured by

changes in the stack and frame pointers) from the top location of memory down,

the simulator tracks all adjustments to the stack or frame pointer and assures the

simulations understanding of the stack, its size, and its location is the same as that

which the program generates. Examination of page usage histograms confirms this

analysis to be correct as there are large unused sections of memory between the end

of the heap and the beginning of the stack in each program.

Each of the page configurations examines all three types of accesses: instruction,

data memory, and stack, and shows in each case that a relatively small working

set captures all code and stack references (less than 16 KB, for example, nearly

capturing all the necessary pages). Code and stack references will be examined in

greater detail in Chapter 7. Since the working set for the data is demonstrably

larger than that for the code or stack, the cache configurations examine only data

references.

Each of the page and cache configurations were examined for memory macros

sizes of 1, 2, 4, 8, 16, and 32 MB. The page space experiments examined pages

of traditional sizes (4K, 8K), as well as significantly larger sizes (16K-256K). Not

46

surprisingly, the benefits of added spatial locality quickly became apparent for the

larger page sizes.

The cache configurations are far simpler. Since the size of an open row in the

memory macro is assumed to be 2 K-bits, and the size of a wide word (or that

which is selected from the column decoders) on that same macro is 256 bits, four

configurations were chosen: a 256 bit and 2 K-bit block sized Direct Mapped cache,

representing potentially the simplest hardware configurations; a 256 bit block sizes

4-way set associative and 256 bit block size 8-way set associative cache. The 4-way

consists of half an open row and the 8-way an entire open row. Somewhat counter-

intuitively, the direct mapped caches tend to outperform the associative caches for

large local memory sizes. This is because small caches require a greater amount

of associativity to achieve high performance, while larger caches can rely upon the

spatial locality generated from consuming large cache lines.

5.2 Metrics

There are primarily two metrics which will be presented throughout the rest of

this chapter. The first, and simplest to understand, is the miss rate. It is, quite

simply, the fraction of accesses which cause a miss over the number of accesses

during the entire program execution. If A represents the total number of accesses

and M represents the total number of misses, the miss rate is merely M
A
. This is

the traditional metric presented when examining the “efficiency” of caches.

However, since the measure of efficiency for the purposes of these experiments

is run length between misses, the more detailed Cumulative Instruction Probability

Density, or CIPD, is also presented. The CIPD is computed by dividing a program’s

execution up into streams of instructions for which no miss is generated, given the

memory state of the machine at the first instruction in each stream. That is, the

47

first instruction encountered which generates a miss constitutes the beginning of the

next stream, which means that the previous instruction is the end of the preceding

stream.

Streams of the same length (in terms of number of instructions) are placed into

buckets. The probability that a randomly selected instruction stream will be from

a given bucket is then computed. If the CIPD is represented by the function Ψ(L)

where L is an instruction length, Ψ(L) will return the probability that an instruction

stream of length greater than or equal to L will be encountered. Thus, for any

program, Ψ(0) = 1, and if γ represents the maximum length of any instruction

stream, Ψ(γ + 1) = 0. Each of the CIPD graphs which follow represent exactly the

function Ψ(L) for each experiment. Ψ can also be used to determine the probability

that an instruction stream of length less than or equal to L will be generated. This

function, called Ψ∗(L) = 1−Ψ(L).
It should be noted that the graphs are constructed from individual data points

determined during program execution. Since the Ψ always begins at 1 and even-

tually decays to 0, anything to the left of the beginning of the graph (usually 103

instructions) will rapidly reach 1. Similarly, the “end-points” presented are not

the true end-points (since they should always become 0); rather they represent the

probabilities of the largest instruction streams encountered (or in the case of miss

rates, the cold-start cost). Rather than presenting the entire function, these start-

ing and ending points were chosen to better represent the graph and include more

information.

There is no notion of weight contained within the CIPD, which can be thought

of as “time spent executing.” Instruction streams of very long length will show a

relatively low CIPD, but could potentially represent the most significant percentage

of the overall execution time.

48

5.3 Interpreting the Results

Because the space explored during the course of experimentation was so large, giving

a detailed discussion of each individual experiment would prove prohibitively long.

Therefore, the results presented in this chapter center around the highlights of ex-

perimentation. The complete results for each experiment run in the formulation of

this chapter can be found in Appendix B.

5.3.1 Miss Rates

As the introduction emphasized, the success of any configuration is measured in

terms of CIPD. Since the CIPD is not easily summarized only the unique results

are presented. For completeness, each experiment will be summarized with miss

rate information. The reader may correctly assume that lower miss rates generally

correspond to longer run lengths between misses.

5.4 Cache Results

Generally, the cache configurations proved less effective than did the page config-

urations. In terms of run lengths, they typically fared 1 to 2 orders of magnitude

worse. This demonstrates that all of the benchmarks exhibited significant spatial

locality. This fact is further reinforced by the fact that none of the set associative

caches ever yielded the best configuration.

5.4.1 DIS Data Management

Figure 5.2 shows that 2 K-bit cache configuration proved far superior to any other.

This is confirmed by the CIPD data in Appendix B. Additionally, increasing the size

of the PIM helped very little using this configuration, although the set associative

caches improved a great deal (indicating that the sets were often unfilled). The only

49

potential improvement is moving from a 1 MB to 4 MB PIM, however, the difference

in miss rate (and corresponding CIPD) is negligible.

0 5 10 15 20 25 30 35
0.278

0.28

0.282

0.284

0.286

0.288

0.29

0.292

0.294
Cache Size vs. Miss Rate

Cache Size (MB)

M
is

s
R

at
e

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure 5.2. DIS Data Management Cache Size vs. Miss Rate

5.4.2 DIS FFT

The FFT benchmark strongly favored the 2 K-bit cache configuration. Neither of

the set associative configurations came close to matching the direct mapped perfor-

mance. The 256 bit direct mapped cache achieved the same performance as the 2

K-bit cache once the PIM size was 16 MB or greater, however the performance for

the 2 K-bit direct mapped cache generally did not benefit from increasing the size

of the PIM. (See Figure 5.3 for further details.)

50

0 5 10 15 20 25 30 35
0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49
Cache Size vs. Miss Rate

Cache Size (MB)

M
is

s
R

at
e

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure 5.3. DIS FFT Cache Size vs. Miss Rate

5.4.3 DIS Method of Moments

The Method of Moments benchmark also showed very little benefit from increasing

the PIM size beyond 1 MB. The 256 bit direct mapped cache proved equally effec-

tive to the 2 K-bit cache in terms of miss rates (though it is difficult to see that

the two lines are merged in Figure 5.4. However, the 2 K-bit cache demonstrated

slightly better performance in terms of run lengths, particularly on the smaller con-

figurations. Figure 5.5 shows the CIPD for the 1 MB cache configuration. The 2

K-bit direct mapped cache has nearly double the probability of the same run length

as the 256 bit cache.

As the PIM size grows beyond 1 MB the performance actually degrades. This

is best illustrated by the difference in scale between the 1 MB graph (Figure 5.5)

and the 32 MB graphs (Figure 5.6). Though the shapes are similar, the 32 MB

51

configuration shows roughly 1
4
the probability that a run length will exceed 1,000

instructions as compared to the 1 MB data. This is because the Method of Mo-

ments benchmark uses several very large matrices which are competing for the same

location within the cache. One would think that the set associative cache would

begin to overtake the performance of the 2 K-bit cache. Figure 5.6 does indeed show

that the set associative performance improves, however not enough to overcome the

spatial locality provided by the 2 K-bit configuration.

These results may seem counter intuitive at first, however, they are the perfect

example of the detail which can be lost when examining only miss rate, as well as

the behavior of applications which use very large matrices.

0 5 10 15 20 25 30 35

0.2

0.22

0.24

0.26

0.28

Cache Size vs. Miss Rate

Cache Size (MB)

M
is

s
R

at
e

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure 5.4. DIS Method of Moments Cache Size vs. Miss Rate

52

10
3

10
4

10
5

10
6

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
1 MB Cache Cumulative Instruction Probability Density

Instructions

P
ro

ba
bi

lit
y

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure 5.5. DIS Method of Moments 1 MB Data Cache CIPD (Ψ)

5.4.4 DIS Image Understanding

The Image Understanding benchmark, unsurprisingly, showed that the 2 K-bit direct

mapped cache provided the best numbers. Again, Figure 5.7 shows that configura-

tions above 1 MB yield virtually no improvement.

5.4.5 DIS Ray Tracing

The DIS Ray Tracing benchmark is the only one where for a small configuration the

2 K-bit cache is outperformed by any other configuration. In this case, the 256 bit

direct mapped cache yielded lower miss rates until a PIM size of 4 MB was reached.

(See Figure 5.8.)

53

10
3

10
4

10
5

10
6

10
7

10
8

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
32 MB Cache Cumulative Instruction Probability Density

Instructions

P
ro

ba
bi

lit
y

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure 5.6. DIS Method of Moments 1 MB Data Cache CIPD (Ψ)

5.4.6 Molecular Dynamics Simulation

The Molecular Dynamics simulation confirmed the results of each of the other ex-

periments. the 2 K-bit direct mapped cache was able to provide enough spatial

locality to yield significantly better performance than any of the other configura-

tions. Increasing the PIM size beyond the minimum 1 MB, however, did not yield

much improvement for the direct mapped configurations. (See Figure 5.9.)

5.5 Page Results

The page experiments examined both data accesses as well as code and stack ac-

cesses. The code and stack numbers (all run with 4 KB page sizes) indicated that

a very small number of 4 KB pages were needed for each. Access to heap data, not

surprisingly, proved to be the dominant factor in achieving significant run lengths.

All of the benchmarks studied benefited from larger page sizes, which indicates

54

0 5 10 15 20 25 30 35
0.2

0.25

0.3

0.35

0.4

0.45
Cache Size vs. Miss Rate

Cache Size (MB)

M
is

s
R

at
e

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure 5.7. DIS Image Understanding Cache Size vs. Miss Rate

that a relatively small number of “windows” into the address space were needed.

Similarly, fragmentation problems, which could occur if a large page was accessed

infrequently because a section of it was empty, or when there are too few windows

into the address space, tended to be insignificant. When accessing larger pages,

the benchmarks were uniformly able to take advantage of spatial locality. Further-

more, most of the benchmarks only required a small PIM to achieve significant

performance (2, 4, and 8 MB configurations generally fared best). The low reuse

inherent in these benchmarks is somewhat advantageous in this regard – data which

was quickly streamed through sat unused on larger nodes. This means that the

most effectively sized working set is relatively small compared to the data which the

program uses throughout its execution.

Because of the large number of configurations derived from the various runs, this

section will concentrate only on significant results.

55

0 5 10 15 20 25 30 35
0.27

0.275

0.28

0.285

0.29

0.295

0.3

0.305

0.31
Cache Size vs. Miss Rate

Cache Size (MB)

M
is

s
R

at
e

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure 5.8. DIS SAR Ray Tracing Cache Size vs. Miss Rate

5.5.1 Code and Stack Pages

Generally, the code and stack required a very small area to satisfy the demands of the

program. Figure 5.10 is typical of programs with larger code and stack requirements.

It shows the DIS Data Management benchmark’s results. Many of the benchmarks

required only one code or stack page to achieve a miss rate of virtually zero. In this

case, one page produced a miss rate of significantly less than 10% on code and 1%

on the stack.

Clearly the 4 KB granularity used in this study is relatively large compared to

the program’s requirements. Chapter 7 will show more fine grain numbers for both

the code and stack.

56

0 5 10 15 20 25 30 35
0.115

0.12

0.125

0.13

0.135

0.14

0.145

0.15
Cache Size vs. Miss Rate

Cache Size (MB)

M
is

s
R

at
e

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure 5.9. Molecular Dynamics Simulation Cache Size vs. Miss Rate

5.5.2 True Data Pages

All of the data miss rate numbers looked very similar to Figure 5.11. For this reason,

only CIPD numbers (as in Figure 5.12) will be presented. Unabridged miss rates

can be found in Appendix C.

Furthermore, since the run lengths uniformly benefited from larger pages, only

the 256 KB page runs will be presented here (since they produced the best results,

and have the smallest number of lines to interpret). Additionally, the use of only

256 KB pages allows the analysis to focus on PIM size rather than page size. Again,

the unabridged numbers can be found in Appendix B.

DIS Data Management

The results shown for the Data Management benchmark in Figure 5.12 are the most

straight forward of any of the benchmarks. The figure clearly shows that between .5

57

10
0

10
1

10
2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of Pages

M
is

s
R

at
e

DIS Data Management −− Segment Miss Rate −− Code and Stack

4K CODE
4K STACK

Figure 5.10. DIS Data Management Code and Stack Miss Rate (4 KB Pages)

10
0

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

4k

8k

16k
32k

64k

128k256k

Number of Pages

M
is

s
R

at
e

DIS Data Management −− Segment Miss Rate −− Data Only

Figure 5.11. DIS Data Management Overall Miss Rate

and 4 MB PIM sizes, the run lengths improve significantly. Furthermore, it shows

that for PIM sizes of greater than 4 MB there is no change in the run lengths

58

generated (hence the lack of lines above 4 MB). Although the benchmark requires

significantly more than 4 MB of total data, the vast majority of time is spent in the

query, which only has about 4 MB worth of index values. The remaining operation,

which is to return the values gathered, is a streaming operation and does not benefit

from increased PIM size.

10
3

10
4

10
5

10
6

10
7

10
8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

4 MB PIM

2 MB PIM

1 MB PIM

512 KB PIM

DIS Data Management −− 256K DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure 5.12. DIS Data Management 256 KB Page CIPD (Ψ)

DIS FFT

The FFT showed two distinct areas of interest: the first at 1 MB and the second

at 8 MB. Figure 5.12 shows very little difference between the 1, 2, and 4 MB con-

figurations. Similarly, the 8 and 16 MB configurations were also clustered together.

Beyond 16 MB no advantage was gained. The gain for an 8 MB PIM is tremen-

dous. There is nearly a 4 order of magnitude increase in the probabilities for all run

lengths over about 103. In fact, configurations less than 8 MB generally performed

59

poorly.

10
3

10
4

10
5

10
6

10
7

10
8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

32 MB PIM
16 MB PIM

8 MB PIM
2 MB PIM

1 MB PIM

512 KB PIM

DIS FFT −− 256K DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure 5.13. DIS FFT 256 KB Page CIPD (Ψ)

DIS Method of Moments

A 2 MB PIM produced fairly high probabilities that run lengths over 103 would be

generated. Clearly this represents the critical mass for a PIM memory macro size

for the Method of Moments benchmark. Figure 5.14 further shows that a 4 MB size

produced gains in the overall lengths of many run, but did not significantly increase

the maximum run length. Configurations above 4 MB did not yield significant

improvement.

DIS Image Understanding

The Image Understanding benchmark required a 4 MB PIM to show significant

performance. Although an 8 MB PIM helped to improve the maximum run length

60

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

4 MB PIM

2 MB PIM1 MB PIM

512 KB PIM

DIS Method of Moments −− 256K DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure 5.14. DIS Method of Moments 256 KB Page CIPD (Ψ)

by about an order of magnitude, no significant gains were made after 8 MB in size.

This result is not surprising considering the relatively large sizes of the images that

must be compared (even in the Fourier domain).

DIS SAR Ray Tracing

Though this graph is one of the most difficult to read, PIMs with size less than

2 MB produced a relatively insignificant number of runs greater than 103. The 2,

4, and 8 MB configurations were similar, except that larger sized PIMs generally

increased the maximum run length significantly (from about an order of magnitude

for each doubling of the PIM size). Beyond 8 MB, changes in PIM size proved less

relevant. See Figure 5.16 for details.

61

10
5

10
6

10
7

10
8

10
9

10
−4

10
−3

10
−2

10
−1

10
0

8 MB PIM

2−4 MB PIM

DIS Image Understanding −− 256K DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure 5.15. DIS Image Understanding 256 KB Page CIPD (Ψ)

Molecular Dynamics Simulation

Figure 5.17 shows that a 2 MB PIM clearly achieves significant performance for

the Molecular Dynamics Simulation. In fact, of all the benchmarks examined, this

simulation showed some of the longest overall run lengths. Significant gains were

made in terms of the maximum run length by increasing the PIM size to 4 MB,

however, beyond that only small improvements appeared.

5.6 Summary of Results

Tables 5.1 and 5.2 show the mean and median values (respectively) of the CIPD for

256 KB pages.

62

10
3

10
4

10
5

10
6

10
7

10
−4

10
−3

10
−2

10
−1

10
0

8 MB PIM

4 MB PIM2 MB PIM

1 MB PIM

512 KB PIM

DIS SAR Ray Tracing −− 256K DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure 5.16. DIS SAR Ray Tracing 256 KB Page CIPD (Ψ)

5.7 Conclusions

Programmers do indeed allocate even pointer-based data in a relatively uniform

fashion [33]. This allows for tremendous gains in performance through the use of

spatial locality. For this reason, larger page sizes, as well as larger cache lines yielded

the greatest performance increase. Furthermore, the page configurations, being

better able to take advantage of this property, outperformed the cache configurations

(generally by 1 to 2 orders of magnitude).

The direct mapped caches, particularly with large cache lines, always outper-

formed the set associative caches, however, they were generally unable to take

advantage of memory macro sizes greater than 1 MB. PIMs, as well as modern

microprocessors with large on-chip L2 caches, will achieve better performance by

using on-chip memory as a page space.

63

10
3

10
4

10
5

10
6

10
7

10
8

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

32 MB PIM
4−16 MB PIM

2 MB PIM

1 MB PIM

512 KB PIM

Molecular Dynamics Simulation −− 256K DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure 5.17. Molecular Dynamics Simulation 256 KB Page CIPD (Ψ)

Increasing the page size did not generally lead to fragmentation problems. In

fact, a 2 MB PIM with 256 KB pages, which only has 8 “windows” into the overall

address space, achieved critical mass for every benchmark except arguably the FFT

which required an 8 MB configuration to achieve significant run lengths (greater

than 103). In general, most benchmarks did not improve significantly beyond the 8

MB configuration due to the relatively large amount of streaming.

64

Table 5.1. Working Set CIPD Mean Values (256 KB pages)

BENCHARMK 2 MB 4 MB 8 MB 16 MB 32 MB
DIS DM 10,000 13,158,000 13,158,000 13,158,000 13,158,000
DIS FFT 200 300 600 1,032,700 1,893,700
DIS MoM 5700 9,258,900 2,615,200 9,615,200 9,615,200
DIS IU 632,900 655,700 9,259,100 9,259,100 9,259,100
DIS RAY 117,400 202,600 1,105,900 1,105,900 1,105,900
MD 225,700 1,233,900 1,233,900 1,388,200 1,491,800

Table 5.2. Working Set CIPD Median Values (256 KB pages)

BENCHARMK 2 MB 4 MB 8 MB 16 MB 32 MB
DIS DM 2,000 20,549,000 20,549,000 20,549,000 20,549,000
DIS FFT 2,000 2,000 2,000 1,540,000 1,715,000
DIS MoM 18,000 393,000 393,000 393,000 393,000
DIS IU 601,000 601,000 1,531,000 1,531,000 1,531,000
DIS RAY 148,000 149,000 155,000 155,000 155,000
MD 11,000 843,000 843,000 1,749,000 2,604,000

65

CHAPTER 6

COMMUNICATION AND DATA DISTRIBUTION

We few, we happy few, we band of brothers. . .

– King Henry, Henry V, William Shakespeare

Thus far, this work has examined PIMs as uniprocessors. This chapter will begin

to examine the properties of a PIM multiprocessor (see Figure 6.1). The execution of

programs on multiprocessors is dominated by the overhead of communication. This

overhead is particularly important on PIM systems because individual PIM nodes

are less powerful than their counterparts on modern parallel systems. This produces

a twofold problem: first, more nodes are required to create a memory capacity of

equivalent size (making the interconnection network bigger); and second, there is

less local storage available per processor for data (meaning that generally more

communication requests will be generated). Therefore, this chapter will quantify

the cost of communication for the given benchmarks for different interconnection

network topologies.

The communication overhead is measured in terms of the distance between com-

municating nodes (in “hops”). The longer the distance, the more overhead a given

communication will incur. Three common interconnection networks are used: a

ring, a 2-d mesh, and a binary hypercube. Since innumerable configurations for a

communication network possible, a more generic measurement of communication

overhead must be made. This measurement, known as the communication radius

66

NODE

 MEMORY

 PROCESSOR

 THREAD

NODE

 MEMORY

 PROCESSOR

 THREADNODE

 MEMORY

 PROCESSOR

 THREAD

NODE

 MEMORY

 PROCESSOR

 THREAD

INTERCONNECTION NETWORK

Figure 6.1. PIM as a Multiprocessor

indicates with how many unique nodes a given node communicates over the course

of a program. If a network topology could be constructed for each benchmark, which

would place all nodes that communicate with each other one hop apart, and which

would eliminate any unused connections, the communication radius for each node

indicates the number of connections that begin at that node.

It will be shown that over the course of each of these benchmarks, a given node

communicates with a small number of other nodes. Given the right network topol-

ogy, data on different nodes can be placed physically close to the next piece of data

to be accessed, which serves to lower the communication cost. Since the communi-

cation radius is small, this goal can be achieved at relatively low cost. Furthermore,

experimentation shows that the mobile thread execution model (described in Sec-

tion 6.1 allows a mobile thread to move from node to node, with relatively long run

lengths on each before another movement is required. This serves to amortize the

cost of communication.

67

6.1 Parallel Execution Models

Chapter 5 indicates that a given PIM node can sustain significant computation by

accessing only the contents of its working set. This is primarily how all parallel

machines function. The working set in a CC-NUMA or COMA machine is the data

contained on a particular node. Message passing systems expose the function of

updating the working set to the programmer. For the Tera it is the contents of a

thread’s register file.

In each case, execution proceeds over the working set until the working set must

be updated or altered. When that happens, execution stops (at least for the thread

which is attempting to access data outside working set) until the set can be updated.

The expense of updating the working set is defined by each architecture. On more

traditional parallel machines, that cost is driven by the speed of the interconnection

network and coherency hardware. The Tera ameliorates this cost by allowing an-

other thread to execute in the place of the blocked thread. However, on a very large

PIM system the sheer scale may make it very difficult for the program to provide

enough threads to keep this cost low. Furthermore, there is ample research available

to describe the implementation and price of these methods.

The proposed method of updating the working set for the purposes of this chapter

is the mobile thread, or rolling snowball. Rather than bringing the needed data to a

thread which requests it, the thread’s execution is brought to the data. There are

several advantages to this approach in the context of PIM. Most importantly, no

coherency protocol is required because the execution of code is tightly coupled with

the data which that code requires (ie, the number of copies of any given piece of

data floating around the system is minimized by forcing most code which modifies

that data to execute on the node which “owns” the data).

Furthermore, PIMs are designed to take advantage of local memory accesses.

68

Without a high degree of locality PIM as an architecture simply makes no sense.

Therefore, the ideal situation is for a thread to execute for a very long period of

time on one node then move on.

In the case of each benchmark, only one thread is examined – the “main loop”

of the program. This represents a worst-case demand for resources (lighter weight

threads should require less computation time, less data, and fewer communications).

It is expected that programs written specifically for parallel multi-threaded compu-

tation will produce better results than those presented here.

6.2 Data Placement

One of the most difficult problems in parallel computing is deciding upon an effec-

tive data placement policy. Specifically, it consists of choosing an efficient physical

location for each data structure which the program accesses. Fortunately, program-

mers tend to allocate data structures with a very high degree of internal spatial

locality [33].

Given the mobile thread model, and the results from Chapter 5 (that large page

sizes are very useful), the data placement chosen for these experiments is to divide

the address space into large “chunks” of memory that are the size of an individual

PIM. (The familiar 2, 4, 8, 16, and 32 MB PIMs are all examined.) No special

rearrangement of data is made for this simulation – it appears in whatever sequence

the programmer allocated it.

This represents an extremely simple PIM compiler and run time system. Con-

secutive requests to allocate memory are serviced contiguously.

69

6.3 Communication Costs

When a mobile thread misses data on the local node, some movement across an

interconnection network is made (either the movement of data or code). The number

of hops required for a given communication to occur is the number of nodes through

which the message must pass to move from the source to the destination, using a

given routing algorithm. Two communication cost measurements are made in this

experiment each time communication is attempted: first, the actual cost of moving

(in terms of hops) from one node to the next; and second the overhead cost of

determining where to route the message. Since it is assumed that a given memory

address can be arbitrarily located throughout the system, when a remote name is

encountered it must be translated to a physical location.

Figure 6.2 shows four possible name resolution mechanisms which can be used to

determine a route for the thread which must move (or data which must be found):

first, the node which generates the request in need of resolution knows, a priori,

that resolution; second, another node (which is known to the node in distress) can

resolve the name; third, the interconnection network (deterministically) knows how

to resolve the name; or forth, the name can be broadcast to all nodes and the node

which possesses that name will respond. The first method, which consists primarily

of maintaining a page table on each node, is discussed in Chapter 4. The second

method, which consists of maintaining a dictionary node to store name resolution

information, will be examined in this chapter. The third (deterministic) method is

assumed to incur zero overhead. The fourth is assumed to be equivalent to the cost

of a broadcast, which is well known for most interconnection networks. That means

that only the second method, specifically requesting the resolution of a name from

another (dictionary) node will be examined.

It should be noted that these four methods can be combined in virtually any

70

NODE NEEDING
TO RESOLVE
A NAME

NODE WHICH
"OWNS" THE
NAMED DATA

(1) SOURCE ONLY NAME RESOLUTION

NODE NEEDING
TO RESOLVE
A NAME

DICTIONARY
NODE

NODE WHICH
"OWNS" THE
NAMED DATA

(2) DICTIONARY BASED NAME RESOLUTION

NODE NEEDING
TO RESOLVE
A NAME

NODE
UNRELATED

NODE WHICH
"OWNS" THE
NAMED DATA

NODE
UNRELATED

(3) BRODCAST BASED NAME RESOLUTION

NODE NEEDING
TO RESOLVE
A NAME

INTERCONNECTION
NETWORK

NODE WHICH
"OWNS" THE
NAMED DATA

(3) INTERCONNECTION NETWORK NAME RESOLUTION

Figure 6.2. Four Possible Translation Mechanisms

combination of ways. For example, a node may maintain a frequently used set of

name resolutions (similarly to the maintenance of a TLB) and use a dictionary node

or a broadcast to resolve unknown names.

Translation at the node which encounters the remote reference, hence forth

termed source translation, can occur by two mechanisms. First, each node may

contain translation information about every address in the system. This would,

however, require a very complex update process if data were to be moved. Further-

more, if the page size is relatively small, a large table must be maintained on each

node (see Chapter 4 for information about the size of such a table).

The other possible source translation mechanism is through the use of a small

cache of frequently translated names (similar in function to a TLB). This does

not guarantee that a name presented to a node can be translated locally, therefore

some sort of fall back mechanism must be in place. (See Section 6.11 for further

information.)

Finally, translation by means of some intermediate node which contains a com-

71

plete dictionary is performed by asking that dictionary node where a given address

resides. This involves an extra series of hops to get to the node holding the dictio-

nary.

The cost of name resolution represents the key measurement in understanding

the overhead generated by a particular network configuration. This cost is primarily

dominated by any extra communication which must occur, or any “overhead” space

which a node must use to maintain tables. Since a memory address on PIM systems

could be off chip, determining the exact node upon which that address resides is a

difficult problem. For the purposes of this experiment, it is assumed that the direc-

tory is contained on 4 nodes evenly distributed across the interconnection network.

The measured translation cost represents the upper bound on overhead, as it as-

sumes that a given node must ask the directory each time an off-chip communication

is necessary.

6.3.1 Interconnection Networks

The three interconnection networks simulated are: a 2-d mesh, a ring, and a binary

hypercube [31]. Each network is assumed to consist of up to 2048 nodes. Thus, the

mesh used is 32x32, the ring is 2048 around, and the hypercube is 10-dimensional.

All communications are presumed to have occurred “ideally” given the routing

algorithm. On the ring, this means that the choice of going left or right is assumed

to have always been made correctly, and on the hypercube, minimal cost routing is

used [20]. The mesh uses the simple X-Y routing scheme (that is, movement is first

made in the X direction and then in the Y), which produces “L”-shaped movement

each time) [20]

While knowing the communication patterns on specific interconnection networks

is useful, only a small number of networks could be analyzed due to limitations on

72

PIM PIM PIM PIM

PIM PIM PIM PIM

PIM PIM PIM PIM

PIM PIM PIM PIM

PIM

PIM PIM

PIM

PIM PIM

PIM PIM PIM PIM

PIM PIM

2-d Mesh (4x4) 4 Node Ring

8 Node Hypercube

Figure 6.3. Example Interconnection Networks

simulation time and the number of results which can be presented. In a more general

sense, understanding how many unique nodes a given node will communicate with

is more revealing. The communication radius, which is defined as the number of

nodes with which a given node communicates, measures precisely that. Thus, the

communication radius probability density, which is the probability that a given node

will communicate with n or fewer nodes, is also presented. This measures the number

of unique nodes with which a given node is likely to communicate.

6.4 Experimental Configurations

Aside from the three interconnection networks used to measure the actual routing

from one node to another, two policies for thread movement are tested. The first

policy dictates that a thread executes until any remote access is encountered. The

thread then stops, determines which node it must move to next, and moves. The

73

NODE WHERE MISS OCCURS NODE TO WHICH THREAD MOVES

NODE WHERE MISS OCCURS NODE TO WHICH THREAD MOVES

THREAD

DATA NEEDED
BY THREAD

THREAD

THREAD WITHOUT PACKAGING
NEEDED DATA

THREAD WHICH PACKAGES
NEEDED DATA

THE SIZE OF THIS DATA WHICH MUST BE MOVED
EQUALS THE "LOOKBACK" SIZE.

Figure 6.4. The two types of thread movement

process is then repeated. This model assumes no data is carried with the thread.

At the next access (even to the prior data), a miss must occur and the thread moves

again.

In the second policy, once a thread moves, it is allowed to access data located

on the previous node without triggering a miss. Each address on the previous node

which the thread touches is tagged by the simulator, and when the thread moves

again the number of unique addresses which were touched on the previous node is

computed. This represents the amount of data that could move with the thread

to cause no references to the previous node. These types of references are referred

to as look-back references. This information gives some idea of context size when

the current thread moves from one node to the next. See figure 6.4. (Chapter 7

describes a mechanism by which these look-back references can be captured before

the thread moves.)

74

6.5 Experimentation

The Shade simulator used for experimentation in this chapter tracks several things

for each PIM size and thread movement policy. For the purposes of this experiment,

only data references are examined. Chapter 7 provides a detailed explanation of how

code and stack references should be dealt with.

The simulator tracks every instruction executed in the program. When a memory

reference (load or store) to the Data segment is encountered (that is, any memory

reference except an instruction fetch or one to the stack), each configuration of

the experiment is presented with the address of the reference and the number of

instructions which were executed from the previous reference. Each of the configu-

rations uses this data to update its run length and overhead statistics (since PIMs

of different sizes will have different segments of the address space contained locally).

The run length information is updated by the number of instructions since the

previous reference.

If the current memory reference is remote (taking into account the thread move-

ment policy), the current run length counter is placed into a bucket and reset to zero.

The thread must then be moved to the remote node. The overhead for that move-

ment is computed. The overhead of asking a dictionary is determined by computing

the round trip communication cost of accessing the dictionary which is physically

closest on the interconnection network. It is assumed that there are 4 evenly spaced

dictionaries through out the network. The cost for a local translation, in the form of

a TLB-like mechanism, is computed to be the miss rate of the TLB for the current

node (each TLB has between 1 and 32 entries). The thread then moves to the new

node. When movement occurs, the routes for that movement are computed for ev-

ery interconnection network examined, which accounts for the communication cost

in terms of hops.

75

If the memory reference was local because the thread movement policy allowed

looking-back to the previous node, the address of the look-back reference was ex-

amined to determine if this was the first request for that data from the current run.

All first requests incremented the counter of unique look-back references. When-

ever a thread moves, this counter is placed into a bucket along with the run length

information to determine the size of look-back references.

6.6 Run Length Data

As in Chapter 5, the success of each parallel implementation is measured in terms of

run lengths between misses. The Cumulative Instruction Probability Density graphs

(CIPD, or Ψ(L), described in section 5.2) is used to measure run lengths for each

experiment in this chapter as well. In this case the CIPD represents the probability

that a given thread when it arrives on a node will execute L instructions or more.

6.6.1 DIS Data Management

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

DIS Data Management CIPD

Run Length

P
ro

ba
bi

lit
y

No Backward References
Backward References

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

Backward Reference Probability Density

Backwards Reference Size (32−bit Words)

P
ro

ba
bi

lit
y

Figure 6.5. DIS Data Management Results (CIPD, Ψ(L))

Generally, this benchmark proved the easiest to quantify in terms of parallel

performance. Since the the data structure being traversed is a tree, and the size of

76

each node is relatively small, the probability of a parent and child being co-located

is quite high. Repeated insertions and deletions into a preexisting tree would alter

this fact significantly, however, true parallel code would attempt to keep parents

and their children located together.

Figure 6.5 shows both the run length and the backwards reference size (in 32-bit

words) for the Data Management benchmark.

As is typical for the benchmarks presented, the backwards reference size was

not large (nothing was greater than O(400) bytes), however the ability to reference

that small amount of data improved performance tremendously. If it were packaged

when the thread moved, the probabilities of hitting longer run lengths improved by

nearly an order of magnitude. Additionally, the maximum possible run lengths were

extended by over two orders of magnitude from about 105 to slightly over 107. The

cost of packaging less than half a kilobyte of data is insignificant compared to those

gains.

6.6.2 DIS FFT

10
3

10
4

10
5

10
6

10
7

10
−2

10
−1

10
0

CIPD With "lookback" DIS FFT

Run Length

P
ro

ba
bi

lit
y

16 MB PIM and greater

2 and 4 MB PIM

8 MB PIM

10
0

10
1

10
2

10
−2

10
−1

10
0

Backward Reference Probability Density

Backwards Reference Size (32−bit Words)

P
ro

ba
bi

lit
y

2 MB PIM

8 MB PIM

Figure 6.6. DIS FFT Results (CIPD, Ψ(L))

The FFT benchmark was, as in Chapter 5, characterized by short run lengths.

77

Though the probability of executing more than 1000 instructions was reasonable,

especially for the larger configurations, the run lengths never exceeded 104. Without

the backwards reference ability, in fact, the run lengths were too small to display

graphically. However, for a very small amount of data (no more than 40 bytes), the

run lengths were improved to the far superior numbers shown in figure 6.6.

There are two very important characteristics of this benchmark which are en-

couraging for future parallelism. Since the data to be allocated was not interleaved

on the PIM in any intelligent way, this represents the absolute lower bound numbers

for any implementation. In fact, a compiler today could take the code and make it

capable of running on a PIM system without any modification.

6.6.3 DIS Method of Moments

Again, the Method of Moments proved itself very difficult to satisfy and one of

the most complex sets of results to analyze. This is not surprising considering

that a true parallel implementation is more difficult (particularly in terms of data

placement) than the simplifying assumptions that are made in this work. However,

the performance curves are not prohibitively bad. The probability of execution for

more than 1000 instructions is relatively low. Again, this is because the matrices

are very large and are allocated one after the other instead of being interleaved or

subdivided.

Without successfully packaging the look-back references there was absolutely no

change between configurations. That is, the 2, 4, 8, 16, and 32 MB configurations

all produced the exact same CIPD graph. Allowing look-back to the previous node

allowed the 4, 8, 16, and 32 MB configurations to improve significantly the probabil-

ity of executing longer instruction streams between misses, however the maximum

run length remained the same. See figure 6.7.

78

10
3

10
4

10
−6

10
−5

CIPD Without "lookback" DIS Method of Moments

Run Length

P
ro

ba
bi

lit
y

2, 4, 8, 16, and 32 MB PIM

10
3

10
4

10
5

10
6

10
7

10
−4

10
−3

10
−2

10
−1

CIPD With "lookback" DIS Method of Moments

Run Length

P
ro

ba
bi

lit
y

2 MB

4, 8, 16, 32
MB

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

10
0

Backward Reference Probability Density

Backwards Reference Size (32−bit Words)

P
ro

ba
bi

lit
y

2 MB

8 MB

4, 8, 16 MB (left to right)

Figure 6.7. DIS Method of Moments Results (CIPD, Ψ(L))

The requests for data from the previous node did change depending on the con-

figuration, though not significantly (see the second graph in figure 6.7). The amount

of data which needed to be transferred was moderate – no more than 8KB, however

the performance gain was tremendous. Over 3 orders of magnitude were gained on

the run length probability densities. This represents a striking improvement at the

cost of transferring a small amount of data.

79

10
2

10
3

10
4

10
5

10
6

10
7

10
−8

10
−7

10
−6

CIPD Without "lookback" DIS Image Understanding

Run Length

P
ro

ba
bi

lit
y

2 MB
PIM

4, 8, 16, 32 MB
PIM

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
−2

10
−1

10
0

CIPD With "lookback" DIS Image Understanding

Run Length

P
ro

ba
bi

lit
y

2, 4, 8, 16, 32 MB
PIM

10
4

10
5

10
6

10
−2

10
−1

10
0

Backward Reference Probability Density

Backwards Reference Size (32−bit Words)

P
ro

ba
bi

lit
y

2 MB PIM

Figure 6.8. DIS Image Understanding Results (CIPD, Ψ(L))

6.6.4 DIS Image Understanding

As with the results in chapter 5, the Image Understanding benchmark again proved

the most demanding. The extremely complex nature of both the algorithms and

data structures requires that a true parallel and multi-threaded implementation be

studied further.

Figure 6.8 shows that without the ability to look-back at previous references, the

probability of executing more than 100 instructions without generating a miss was

significantly less than 10−6. The ability to look-back proved extremely successful at

increasing the probability of a high instruction run, however, the cost was relatively

80

high. Nearly 512K of data would be required to achieve any result. However, it

should be strongly noted that the improvement of the probability of long runs is

over 6 orders of magnitude.

6.6.5 DIS Ray Tracing

10
2

10
3

10
4

10
5

10
6

10
7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

CIPD Without "lookback" DIS SAR Ray Tracing

Run Length

P
ro

ba
bi

lit
y

2 MB PIM

4, 8, 16
32 MB
PIM

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
−3

10
−2

10
−1

10
0

CIPD With "lookback" DIS SAR Ray Tracing

Run Length

P
ro

ba
bi

lit
y

4, 8, 16, 32 MB
PIMs

 2 MB PIM

10
0

10
1

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

10
0

Backward Reference Probability Density

Backwards Reference Size (32−bit Words)

P
ro

ba
bi

lit
y

2 MB PIM

4 MB PIM

Figure 6.9. DIS Ray Tracing Results (CIPD, Ψ(L))

The DIS Ray Tracing was one of the most successful in terms of run lengths.

Even without the look-back optimization, it performed relatively well. There was

no difference between the 4, 8, 16, or 32 MB configurations because the working set

was effectively captured.

81

The ability to look-back proved less effective at the 2 MB configuration since it

required significantly larger amounts of data to succeed than at the 4 MB configu-

ration (see figure 6.9 for further details). The 4MB runs required less than 1KB to

more than double the performance.

6.6.6 DIS Molecular Dynamics

10
3

10
4

10
5

10
6

10
7

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

CIPD With "lookback" Molecular Dynamics Simulation

Run Length

P
ro

ba
bi

lit
y

2 MB PIM

4 MB PIM

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Backward Reference Probability Density

Backwards Reference Size (32−bit Words)

P
ro

ba
bi

lit
y

2 MB PIM

Figure 6.10. Molecular Dynamics Results (CIPD, Ψ(L))

The Molecular Dynamics Simulation exhibited the best performance with the 4

MB configuration. In fact, larger configurations made no difference in performance

whatsoever (see figure 6.10). The 2 MB configuration, on the other hand, performed

very badly (nearly 2 orders of magnitude worse in terms of probability density).

Additionally, while the larger configuration required virtually no look-back, the 2

MB system required nearly 512K for a successful run.

Considering that without the look-back the same 2 MB configuration failed to

achieve any instruction runs over 100 in length, the look-back was highly successful,

however increasing the macro size proved significantly more effective.

82

6.7 Communication Radius Data

The Communication Radius represents the measure of connectivity between nodes

given a “virtual” network with no assigned topology. If, for example, node X

exhibits a Communication Radius of 4, that means that there are only 4 nodes

in the entire network with which node X ever communicates during the course of

program execution. The ideal network for any problem could be constructed by

connecting each node in the network once (and only once) with each node that

it communicates. (This is not a complete cross bar which allows every node to

communicate with every other node in one hop.)

The data presented here (for configurations allowing and refusing look-back)

shows the communication radius for each benchmark. It is presented as a cumula-

tive probability density, however there are some important differences between this

measure (known as the Cumulative Communication Radius Probability Density or

the CCRPD) and the CIPD discussed in section 5.2. If the CCRPD is represented

by the function Φ(n), which is the probability that a given node will communicate

with n or fewer unique nodes. Φ is cumulative to the left (whereas the CIPD is

cumulative to the right).

Figures 6.11 and 6.12 show that for a particular node, a relatively small number

of nodes will be communicated with. In fact, the largest such number is 9, showing

that the 10-dimension hypercube could most likely be arranged to allow for ideal

communication. In virtually every case, except for the Method of Moments, 50% of

communication occurs between one pair of nodes, suggesting that the data placement

in a ring could be optimized beyond what will be presented in section 6.9.1.

Allowing for look-back generally reduces the number of nodes which participate

in the communication radius, however, not significantly (typically by 1-2 nodes).

The benefit of look-back is primarily derived from increasing the run length on a

83

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Nodes

P
ro

ba
bi

lit
y

DIS Data Management Cumulative Communication Radius Probability Density

2 MB PIM

4 MB PIM

8, 16, 32
MB PIM

1 2 3 4 5 6 7
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Nodes

P
ro

ba
bi

lit
y

DIS FFT Cumulative Communication Radius Probability Density

2 MB PIM

4 MB PIM

8 MB PIM

16 MB
PIM

32 MB
PIM

1 2 3 4 5 6 7
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Nodes

P
ro

ba
bi

lit
y

DIS Method of Moments Cumulative Communication Radius Probability Density

2 MB PIM

8 MB
PIM

16, 32
MB PIM

1 1.5 2 2.5 3 3.5 4
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Nodes

P
ro

ba
bi

lit
y

DIS Image Understanding Cumulative Communication Radius Probability Density

2 MB PIM

4 MB PIM

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Nodes

P
ro

ba
bi

lit
y

DIS SAR Ray Tracing Cumulative Communication Radius Probability Density

2 MB PIM

4, 8 MB PIM
16 MB
PIM

32 MB
PIM

1 2 3 4 5 6 7 8 9
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Nodes

P
ro

ba
bi

lit
y

Molecular Dynamics Simulation Cumulative Communication Radius Probability Density

2 MB PIM
4 MB PIM

8 MB PIM
16,32
MB PIM

Figure 6.11. Cumulative Communication Radius Probability Density (without look-
back)

84

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.75

0.8

0.85

0.9

0.95

1

Number of Nodes

P
ro

ba
bi

lit
y

DIS Data Management Cumulative Communication Radius Probability Density

2 MB PIM

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Nodes

P
ro

ba
bi

lit
y

DIS FFT Cumulative Communication Radius Probability Density

2 MB PIM

4 MB PIM

8 MB
PIM

16 MB
PIM

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Nodes

P
ro

ba
bi

lit
y

DIS Method of Moments Cumulative Communication Radius Probability Density

32 MB PIM

4 MB PIM

8 MB PIM 16 MB
PIM

2 MB
PIM

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Nodes

P
ro

ba
bi

lit
y

DIS Image Understanding Cumulative Communication Radius Probability Density

2 MB PIM

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Nodes

P
ro

ba
bi

lit
y

DIS SAR Ray Tracing Cumulative Communication Radius Probability Density

2 MB PIM

4 MB PIM

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Nodes

P
ro

ba
bi

lit
y

Molecular Dynamics Simulation Cumulative Communication Radius Probability Density

2 MB PIM

4 MB PIM

8 MB PIM

Figure 6.12. Cumulative Communication Radius Probability Density (with look-
back)

85

given node.

Not surprisingly, increasing the size of each PIM’s memory also significantly

reduces the communication radius for a given node quite significantly. Some bench-

marks, notably the Method of Moments and FFT, show a crossing of the CCRPDs

when the configuration changes. This is easily accounted for by the fact that the

data placement over a given size also changes significantly. Additionally, the lines

which cross are always grouped close together indicating that the change is relatively

insignificant.

The configurations which allow looking back (or packaging of data between

thread movements) require a communication radius of 6 or less to satisfy every

demand placed on the network. This indicates that a hierarchical network config-

uration, in which non-communicating PIMs are grouped far apart would allow for

significant improvement over a network which is more uniform in structure.

6.8 Individual Network Performance

Now that the overall structure of communication is understood in a theoretical

sense, the behavior of individual interconnection network implementations can be

examined in detail. One final metric is required to do so successfully: the Commu-

nication Probability Density, or CPD, which represents a measure of the probability

a given communication (caused by a memory miss) will result in a given number of

hops or less. Since hops represent the distance between two nodes given a particu-

lar network topology, assuming an initial data placement, this is a measure of the

success in placing data close together as well as a verification of the more abstract

communication radius analysis presented above.

The CPD is represented by Υ(n). For a given number of hops, n, Υ(n) represents

the probability that given a communication request n hops or fewer will be required.

86

As with the previous CCRPD (Φ(n)), Υ(0) = 0. Furthermore, if γ represents the

largest distance between any two nodes on the network, then Υ(γ) = 1 in all cases.

6.9 Memory Space

It is assumed that for each configuration, a 4 GB memory space is available (even

though that space may not be entirely filled). Thus, the networks for the 2 MB

PIM configuration had 2048 nodes, while the networks for the 4 MB configuration

had only 1024 nodes. While the size of the network could have been optimized for

the particular benchmark being run – after all, the smaller a ring is the lower the

communication overhead – doing so would not represent a “real machine.” Actual

computers have fixed interconnection network topologies which cannot be dynami-

cally reconfigured.

6.9.1 Ring

Although perhaps the simplest interconnection network studied, the ring generally

produced a very high communication cost. While the ideal network would satisfy

over half the requests with only one hop, even the best benchmark results on the

ring (the Image Understanding) could not satisfy 40% of requests with one hop when

look-back was prohibited. Figure 6.13 further shows that many of the benchmarks

(the Data Management, Method of Moments, and Ray Tracing) required a very

larger number of hops (a hundred or more) in many cases.

Allowing for look-back clearly improved the situation tremendously. In fact,

Figure 6.14 shows that in some cases well over half the network requests could be

serviced in one hop (see the Image Understanding and Method of Moments runs).

Unfortunately, there were still many requests requiring hundreds of hops. The 2

MB configurations suffered disproportionately from this, whereas the larger config-

urations were more likely to be immune because they possessed a larger quantum

87

50 100 150 200 250 300 350 400 450 500 550 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hops

P
ro

ba
bi

lit
y

DIS Data Management Communication Length Probability Density

2 MB PIM

4 MB PIM

8 MB PIM
16 MB
PIM

32
MB
PIM

50 100 150 200 250 300 350 400 450 500 550 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hops

P
ro

ba
bi

lit
y

DIS FFT Communication Length Probability Density

2 MB PIM

4 MB PIM

8 MB PIM

16 MB
PIM

32
MB
PIM

50 100 150 200 250 300 350 400 450 500 550 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hops

P
ro

ba
bi

lit
y

DIS Method of Moments Communication Length Probability Density

2 MB PIM 4 MB PIM 8 MB
PIM

16

32

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hops

P
ro

ba
bi

lit
y

DIS Image Understanding Communication Length Probability Density

2 MB PIM

NOTE: ALL OTHER CONFIGURATIONS PRODUCED 1 HOP

50 100 150 200 250 300 350 400 450 500 550 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hops

P
ro

ba
bi

lit
y

DIS SAR Ray Tracing Communication Length Probability Density

2 AND 4 MB PIM

8 MB PIM
16

32

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hops

P
ro

ba
bi

lit
y

Molecular Dynamics Simulation Communication Length Probability Density

2 MB PIM

4 MB PIM

NOTE: THE 8 MB PIM ALWAYS PRODUCED
 2 HOPS

 THE 16 AND 32 MB PIMS ALWAYS
 PRODUCED 1 HOP

Figure 6.13. Ring CPD (without look-back)

of data.

88

50 100 150 200 250 300 350 400 450 500 550 600

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hops

P
ro

ba
bi

lit
y

DIS Data Management Communication Length Probability Density

2 MB PIM

4 MB PIM

8 MB PIM

16
MB
PIM

32
MB
PIM

50 100 150 200 250 300 350 400 450 500 550 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hops

P
ro

ba
bi

lit
y

DIS FFT Communication Length Probability Density

2 MB
PIM

4 MB PIM

8 MB PIM

16
MB
PIM

32
MB
PIM

50 100 150 200 250 300 350 400 450 500 550 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hops

P
ro

ba
bi

lit
y

DIS Method of Moments Communication Length Probability Density

2 MB PIM

4 MB PIM
8 MB PIM

16 MB
PIM

32
MB
PIM

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hops

P
ro

ba
bi

lit
y

DIS Image Understanding Communication Length Probability Density

2 MB PIM

NOTE: 4, 8, 16, 32 MB
 CONFIGURATIONS
 PRODUCED ONLY
 1 HOP EACH TIME

50 100 150 200 250 300 350 400 450 500 550 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hops

P
ro

ba
bi

lit
y

DIS SAR Ray Tracing Communication Length Probability Density

2 MB PIM

4 MB PIM 8 MB PIM

16 32

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hops

P
ro

ba
bi

lit
y

Molecular Dynamics Simulation Communication Length Probability Density

2 MB PIM

4 MB PIM

8 MB PIM

NOTE: 16 AND 32 MB
 CONFIGURATIONS PRODUCED
 ONLY 1 HOP EACH TIME

Figure 6.14. Ring CPD (with look-back)

6.9.2 Mesh

The mesh configurations proved better able to handle the load, as can be seen in

figures 6.15 and 6.16. While the look-back feature did significantly improve the
89

2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hops

P
ro

ba
bi

lit
y

DIS Data Management Communication Length Probability Density

2 MB PIM

NOTE: ALL OTHER CONFIGURATIONS PRODUCED
 ONLY ONE HOP

5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hops

P
ro

ba
bi

lit
y

DIS FFT Communication Length Probability Density

2 MB PIM

4 MB PIM

8 MB PIM

16,
32
MB
PIM

5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hops

P
ro

ba
bi

lit
y

DIS Method of Moments Communication Length Probability Density

2 MB PIM

16 MB PIM

32 MB PIM
4 MB PIM 8 MB PIM

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hops

P
ro

ba
bi

lit
y

DIS Image Understanding Communication Length Probability Density

2 MB PIM

NOTE: ALL OTHER CONFIGURATIONS
 PRODUCED ONLY ONE HOP

2 4 6 8 10 12 14 16 18 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hops

P
ro

ba
bi

lit
y

DIS SAR Ray Tracing Communication Length Probability Density

2 MB PIM

4 MB PIM

NOTE: ALL OTHER CONFIGURATIONS
 PRODUCED ONLY ONE HOP

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hops

P
ro

ba
bi

lit
y

Molecular Dynamics Simulation Communication Length Probability Density

2 MB PIM

4 MB PIM

8 MB PIM

NOTE: ALL OTHER CONFIGURATIONS PRODUCED
 ONLY ONE HOP

Figure 6.15. Mesh CPD (without look-back)

results, it was nowhere near as much as in the ring. No communication request was

more than 35 hops away, indicating that nearly an order of magnitude improvement

90

2 4 6 8 10 12 14 16 18

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hops

P
ro

ba
bi

lit
y

DIS Data Management Communication Length Probability Density

2 MB PIM

NOTE: ALL OTHER CONFIGURATIONS PRODUCED ONLY
 ONE HOP

5 10 15 20 25 30 35
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hops

P
ro

ba
bi

lit
y

DIS FFT Communication Length Probability Density

2 MB PIM

4 MB PIM 8 MB PIM

16
MB
PIM

NOTE: THE 32 MB PIM PRODUCED ONLY 1 HOP

5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hops

P
ro

ba
bi

lit
y

DIS Method of Moments Communication Length Probability Density

2 MB PIM

16 MB
PIM

8 MB
PIM

4 MB PIM 32 MB PIM

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hops

P
ro

ba
bi

lit
y

DIS Image Understanding Communication Length Probability Density

2 MB PIM

NOTE: ALL OTHER CONFIGURATIONS PRODUCED ONLY ONE HOP

2 4 6 8 10 12 14 16 18 20
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hops

P
ro

ba
bi

lit
y

DIS SAR Ray Tracing Communication Length Probability Density

2
4
8
16
32

2 MB PIM

4 MB PIM

NOTE: ALL OTHER CONFIGURATIONS PRODUCED ONLY ONE HOP

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hops

P
ro

ba
bi

lit
y

Molecular Dynamics Simulation Communication Length Probability Density

2 MB PIM

4 MB PIM

8 MB PIM

NOTE: ALL OTHER CONFIGURATIONS PRODUCED ONLY ONE HOP

Figure 6.16. Mesh CPD (with look-back)

from the worst case in the ring can be seen. Additionally, the 50% points tended

to be close to 5 hops, which indicates that half the requests could be serviced very

91

rapidly.

Allowing for look-back generally improved the results of the FFT, Image Un-

derstanding, Ray Tracing, and Molecular Dynamics Simulation. In each of the

larger memory macro configurations, data locality improved and a greater number

of communicating nodes were placed within one hop of each other.

6.9.3 Hypercube

Not surprisingly, the hypercube configuration showed the best results. Most commu-

nication, when look-back was allowed, occurred within 2-3 hops, with the Method

of Moments benchmark again exhibiting the most demanding performance. Even

without look-back, the hypercube managed to services most requests within 3-4

hops. Given the high bisection bandwidth of this type of network, along with the

high connectivity, these results are will be expensive.

6.10 Communication Overhead

The communication overhead, in terms of the average number of hops required

to reach a node capable of translating a given off chip address, is presented as

a cumulative probability density in Figure 6.19. This is the mean for all PIM

configurations. Since it is assumed that there are 4 nodes capable of translating

addresses, all of which are evenly distributed around the interconnection network,

the mean changed very little regardless of PIM size.

Changing the number of nodes will, of course, effect the outcome of these re-

sults. One node would increase the overhead (because, on average, a given node

is farther away on the network), and fewer nodes will decrease the overhead. The

4 node configuration was chosen merely to demonstrate that the number of nodes

performing a dictionary service does not have to be large.

92

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.9998

Number of Hops

P
ro

ba
bi

lit
y

DIS Data Management Communication Length Probability Density

2 MB PIM

1.0

NOTE: ALL OTHER CONFIGURATIONS PRODUCED ONLY ONE HOP

1 1.5 2 2.5 3 3.5 4 4.5 5
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Hops

P
ro

ba
bi

lit
y

DIS FFT Communication Length Probability Density

2 MB PIM

4 MB PIM 8 MB PIM

16 MB PIM

NOTE: THE 32 MB PIM ALWAYS PRODUCED ONE HOP

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hops

P
ro

ba
bi

lit
y

DIS Method of Moments Communication Length Probability Density

4 MB PIM

2 MB PIM
8 MB PIM

16 MB PIM
32 MB PIM

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hops

P
ro

ba
bi

lit
y

DIS Image Understanding Communication Length Probability Density

2 MB PIM

NOTE: ALL OTHER CONFIGURATIONS PRODUCED ONLY ONE HOP

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0.98

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

Number of Hops

P
ro

ba
bi

lit
y

DIS SAR Ray Tracing Communication Length Probability Density

2 MB PIM

4 MB PIM (ENDS AT 2 HOPS)

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hops

P
ro

ba
bi

lit
y

Molecular Dynamics Simulation Communication Length Probability Density

2 MB PIM

4 MB PIM
(ENDS AT 3 HOPS)

8 MB PIM
(ENDS AT 2
 HOPS)

NOTE: ALL OTHER CONFIGURATIONS
 PRODUCED ONLY ONE HOP

Figure 6.17. Hypercube CPD (without look-back)

6.11 Local Translation Mechanisms

Allowing for a simple source translation mechanism (as described in Section 6.3) is

extremely beneficial. Figure 6.20 shows that remembering the physical location of93

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Hops

P
ro

ba
bi

lit
y

DIS Data Management Communication Length Probability Density

2 MB PIM

NOTE: ALL OTHER CONFIGURATIONS PRODUCED
 ONLY ONE HOP

1 1.5 2 2.5 3 3.5 4 4.5 5
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Hops

P
ro

ba
bi

lit
y

DIS FFT Communication Length Probability Density

2 AND 4 MB PIM

8 MB PIM

16 MB PIM

NOTE: ALL OTHER CONFIGURATIONS PRODUCED ONLY ONE HOP

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hops

P
ro

ba
bi

lit
y

DIS Method of Moments Communication Length Probability Density

2 MB PIM

4 MB PIM

8 MB PIM

16 MB PIM

32 MB
PIM

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hops

P
ro

ba
bi

lit
y

DIS Image Understanding Communication Length Probability Density

2 MB PIM

NOTE: ALL OTHER CONFIGURATIONS PRODUCED ONLY ONE HOP

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Hops

P
ro

ba
bi

lit
y

DIS SAR Ray Tracing Communication Length Probability Density

2 MB PIM

4 MB PIM

NOTE: ALL OTHER CONFIGURATIONS PRODUCED ONLY ONE HOP

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hops

P
ro

ba
bi

lit
y

Molecular Dynamics Simulation Communication Length Probability Density

2 AND 4 MB PIMS

8 MB PIM

NOTE: ALL OTHER CONFIGURATIONS PRODUCED
 ONLY ONE HOP

Figure 6.18. Hypercube CPD (with look-back)

the previous two remote memory references yields a miss rate of less than 10% for

every benchmark studied.

94

0 5 10 15 20 25 30
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Aggregate Overhead Probability Density

Number of Hops

P
ro

ba
bi

lit
y

Ring
Mesh
Hypercube

Figure 6.19. Aggregate Overhead

1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

M
is

s
R

at
e

Number of Available Translations

2 MB PIM SIZE −− Remote Memory Access Translation Mechanism

DIS Data Management

DIS Image Understanding

DIS
Method of
Moments

DIS Ray Tracing

DIS FFT

MD SImulation

Figure 6.20. Remote Name Translation Mechanism Miss Rate (2 MB PIM)

95

Large PIM sizes significantly lower the miss rate of this translation mechanism.

Figure 6.21 shows that for a 32 MB PIM, storing only one previous translation is

quite effective. In fact, it reduces the miss rate for every benchmark except the Data

Management and Method of Moments to virtually zero. Although the two graphs

presented in this section represent (respectively) the worst and best case results, the

unabridged data can be found in Appendix D.

1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

M
is

s
R

at
e

Number of Available Translations

32 MB PIM SIZE −− Remote Memory Access Translation Mechanism

DIS Data Management

DIS Method of Moments

Figure 6.21. Remote Name Translation Mechanism Miss Rate (32 MB PIM)

6.12 Conclusions

Each benchmark has demonstrated itself to be well suited to a mobile thread envi-

ronment. Because each of these benchmarks continuously requires new data to be

made available (that is, the reuse is relatively low), long run lengths were obtained

by moving from one node to the next while consuming as much local data as possible

at each node. Clearly this is advantageous to a PIM system where the processing and

96

data being processed are tightly coupled. Furthermore, since each of these bench-

marks are known to have good parallel implementations, the numbers presented in

this chapter represent the absolute worst case. A mechanism for transferring the ex-

ecution of a single thread from one node to the next could be implemented entirely

in hardware without any support from the programmer or compiler whatsoever.

Therefore, these lower bound numbers are extremely encouraging.

This simple data placement shows that the data structures that each of the

benchmarks rely upon could be reasonably well placed throughout a PIM system

by the runtime system without any compiler or user annotation. Multi-threaded

implementations of each of these benchmarks can be developed on top of this type of

simple data placement because of the latency tolerance inherent in multi-threading.

The results show that mobile threads carrying a small amount of context with

them could achieve significant run lengths on each node. Furthermore, this context

can include a very small amount of data from the current node. This indicates

that thrashing under such a model is relatively unlikely; thus, the communication

overhead associated with moving a thread is amortized by the gain made by bringing

it physically closer to the data being processed.

The overhead involved in terms of hops across the communication is relatively

low. Since nodes tend to communicate with only a small number of other nodes, even

a simplistic arrangement (in this case, placing sequential addresses close together)

produces meaningful results. Additionally, the overhead required to determine upon

which node a given address resides is relatively low provided that some nodes serve

as a directory. A small number of nodes (in this case 4), when placed evenly through-

out the system, prove to be easily capable of serving dictionary requests with low

communication overhead.

Providing two remote memory address translations on each node (for each thread)

97

proves to be highly effective in speeding up the translation process. In fact, consid-

ering that the miss rate for this two translation TLB-like structure is nearly zero for

every benchmark studied indicates that providing elaborate dictionary structures for

remote name translation is unnecessary. When further coupled with the fact that

PIMs can effectively take on very large chunks of the address space, these directory

structures can be small. Additionally, since very few, small structures are needed,

updating them will be relatively easy.

Finally, it should be noted that since each node held contiguous pieces of data

(from 2 MB to 32 MB) in these experiments, only a small number of windows into

the address space are needed. The results show that if a small amount of highly

reused data is available, that, combined with the current segment being analyzed,

allows for very long execution times between misses. This means that a very large

page (or segment) size is feasible and even desirable. The advantage of using such

large chunks of data is that translation information can be even further compacted

(see Chapter 4). For example, if a node wishes to determine if it owns a given

address it simply performs a single compare (or in the case of segmentation, one

simple boundary check) can quickly determine if a given address should be sent

off chip. Nodes which provide translation mechanisms can also store smaller tables

and therefore perform faster searches. Finally, if the code is mobile, an intelligent

run-time system could allow for a deterministic mapping of segments to nodes and

support constructs for memory allocation which place associated pieces of data close

together rather than “in the next free space.”

98

CHAPTER 7

CODE, THREADS, CONTEXT, AND CARPET BAGS

To build may have to be the slow and laborious task of years. To destroy
can be the thoughtless act of a single day.

– Sir Winston Churchill

In Chapter 6 it was shown that in a mobile thread environment, when a thread

moves, but carries with it needed data from the previous node upon which the thread

resided, the run length between off node accesses is greatly improved. Or, more

succinctly, that mobile threads often look back at the previous node. Furthermore,

the amount of data which a mobile thread accesses on the previous node is relatively

small but tends to have a high degree of reuse. This begs the question: how can a

thread capture this data before it moves without specific programmer intervention?

Furthermore, there is more than data to consider when answering this question.

The code and stack must also be accounted for.

Chapter 5 showed that the amount of data required by the code and stack is

smaller than 4 KB when kept on a nodes. A mobile thread must be able to carry

enough of its own code and stack with it to execute successfully when it moves – or,

at least start execution successfully. Because this is a multi-threaded environment,

some latency can be tolerated, however, if a mobile thread were to arrive on a node

and be unable to execute even a single instruction that would be intolerable.

This chapter introduces the notion of a Carpet Bag Cache, which is a mobile

cache and synchronization mechanism associated with a thread. It further shows

99

NODE B

MEMORY
MACRO

CARPET BAG
CACHE

THREAD

NODE A

MEMORY
MACRO

CARPET BAG
CACHE

THREAD

Figure 7.1. A Carpet Bag Cache moving from Node A to Node B

that the use of such a cache is highly successful even if the cache contains only a

small amount of data. The success of the cache is measured in terms of overall miss

rate of the cache and communication cost reduction.

7.1 Carpet Bag Caches

A Carpet Bag Cache (seen in Figure 7.1) is simply a small cache associated with a

mobile thread which can move along with the thread. Its goal is to capture code,

stack, and data references which will be needed by the thread after it has traveled.

The code and stack references are of particular importance. It should be noted that

on PIM the implementation of a carpet bag cache might not be done entirely in

hardware. It may merely be a small buffer (in the memory macro) which contains

the necessary data and is checked before an off node access is generated.

7.1.1 Implementation

There are two possible implementations for a Carpet Bag Cache. The most obvious

implementation is as a standard general SRAM cache. This has the advantage of

allowing a node to have access to a general purpose cache (see Figure 7.2).

100

PROCESSOR

MEMORY MACRO

CARPET BAG CACHE

Figure 7.2. General Carpet Bag Cache

However, this may not be desirable. The memory latency on most PIM macros

is quite low (even compared to the logic speed). Given that the machine is multi-

threaded, tolerating this latency rather than using a complicated caching structure

will be less expensive in terms of hardware cost, and it may significantly reduce the

need for synchronization mechanisms. The alternative is to provide a small amount

of support for the carpet bag cache in hardware and to use the runtime system to

lower the latency of a potential off-chip access rather than eliminate it completely.

This has the advantage of not only being simpler in hardware, but of being well

suited to a multi-threaded environment.

Figure 7.3 shows a (primarily) software implementation of a carpet bag cache.

The cache itself, which came from the previous node, is stored on the PIMs memory

macro. When a program generates a memory access, the PIM determines if the

requested data resides locally. If it does, the access can proceed normally, except

that the address for that access is stored in a Memory Access Buffer (MAP), which is

used to store the addresses of the most recently accessed wide words in memory. See

Figure 7.3. However, if the access is a request for remote data the carpet bag cache

101

MEMORY
ACCESS
UNIT

NOTE: THIS
IS JUST HELD
IN MEMORY

MEMORY MACRO

PROCESSOR

CARPET BAG CACHE
FROM PREVIOUS NODE

AGE ADDRESS

HOLD MOST
RECENTLY USED
CODE, STACK, AND
DATA ADDRESSES
FROM CURRENT NODE

MEMORY ACCESS
BUFFER

Figure 7.3. Software Implementation of a Carpet Bag Cache

must be searched to see if this “remote data” has, in fact, been imparted with the

thread. This search can be done as a request for the cache from memory, followed

by a small routine in software, or it could be done entirely in software by invoking

an exception. If the data is found in the carpet bag cache, then the program can

continue running. However, if it is not, the carpet bag and the recently touched

local addresses can be merged to form a new carpet bag. Anything which does not

fit can then be ejected back to the node to which it belongs. Figure 7.3 shows how

this implementation would function.

It should be strongly noted that because this is a multi-threaded machine, and

local memory accesses can be masked with a small number of threads, the high

latency operations in the previous description (ie, the memory accesses) are pre-

sumed to be masked by other threads running on the node. The only true overhead

involved is with whatever portion of the above described function is implemented in

software. Because a remote memory access is such a high latency event, however,

adding a small amount of code to search the carpet bag cache or package it up before

delivery is significantly smaller than the communication cost.

102

Accesses to the code or stack should occur in a separate buffer during this con-

figuration – specifically, a small number of wide words should always be available

for reference. This is particularly important for the code.

7.1.2 Synchronization

Given that data no longer resides entirely on a single node, some simple form of

synchronization must be maintained to prevent critical data from being corrupted.

This is a necessary feature of multi-threaded systems regardless of the types of

potential caching used. It is proposed that each wide word be annotated with a

single “full or empty” bit similar to that employed in the Tera MTA. This status

bit always begins set to empty. A wide word store to the given memory location

will set the status bit to full. There are, then, potentially two types of load (for any

part of the wide word): a take, which will set the status bit to empty and load the

data, or a copy which loads the data without altering the status bit. In either case

(take or copy), if the status bit indicates that the wide word is empty, the load will

block until it becomes full.

These two types of load operation are very important given that not all data

needs to be synchronized. For example, if self-modifying code is prohibited (virtually

always a good idea), all instruction fetches could be copies. Furthermore, if a thread

has its own stack (some threads may share a stack), there is no fear of interference

from other threads. Allowing the programmer to decide seems entirely reasonable.

However, given that one may wish to create an ISA independent carpet bag cache,

the simple assumption that instruction fetches generate copies, and every other

memory reference generates a take, is reasonable.

Finally, it should be noted that this mechanism may allow for starvation. If

other threads depend on data that remains in a given thread’s carpet bag cache,

103

they cannot continue their execution. There is no mechanism to guarantee that a

thread will not hold onto such data for a very long time. In fact, deadlock could

also occur if two threads become blocked waiting for data which the other has in its

cache. Therefore some programmer awareness will be desirable.

7.2 Experimentation

The analysis program looked at both potential carpet bag cache configurations: first,

the carpet bag cache as a general cache; and second, the carpet bag cache when used

simply to reduce off-chip accesses. All the PIM sizes considered thus far (2, 4, 8,

16, and 32 MB) were examined with the same data distribution given in Chapter

6. The carpet bag cache itself a fully associative true LRU cache with 256 bit lines.

All sizes from 1 to 1024 entries were examined.

Since the data distribution in Chapter 6 assumes that the address space is evenly

divided into segments the size of a PIM, and an important function of this exper-

iment is to determine the impact of code and stack references, all code or stack

accesses are assumed to be off node. When a code or stack reference misses the

carpet bag cache, it generates a remote memory request (to read the appropriate

data), but the thread does not change nodes. This is meant to classify these accesses

as the “worst case.” In all likelihood, a large amount of code or stack data could

reside on the node upon which the thread is currently executing.

Access to the data segment is treated differently. It is assumed that when a

carpet bag cache miss is generated by a data access the thread should move to that

data. This corresponds directly to the experiments in Chapter 6, except that the

“look-back” mechanism is the finite size carpet bag cache (which has the added

advantage of containing any data from any previous node which was not ejected by

the LRU policy).

104

The Shade program used in this analysis tracks all loads, stores, and instruction

fetches generated by the benchmark being analyzed. The effective address generated

by each is then fed to the appropriate carpet bag cache. Each cache tracks the overall

miss rate for a cache size of 1 to 1024 entries, since a true LRU cache of N−1 entries
is always a subset of a true LRU cache of N entries. The statistics for these caches

represent the case of a general cache.

Additionally, there are separate caches which track only off-chip references. A

reference is considered “off-chip” if the node which it is attempting to access is

different from the node which was used for the last access. Since multiple cache

configurations can be run during each experiment, each cache data structure tracks

the node used in the previous access.

7.3 Results

The carpet bag cache when used as either a general purpose cache or as merely a

small buffer to hold references from the previous node proved extremely effective.

Holding one wide word from the previous node cut remote accesses by 50% or more

for every benchmark except the DIS Image Understanding.

Code and Stack references were also captured extremely efficiently. One wide

word representing the stack generally satisfied most memory demands.

Surprisingly, the PIM size did not have any impact on the effectiveness of the

carpet bag cache. The only exception to this is, again, the Image Understanding

benchmark.

7.3.1 DIS Data Management

The simpler off-chip only configuration proved highly effective in capturing the

“look-back” to the previous node. However, the cost was moderately high. Fig-

ure 7.4 shows that to capture 90% of the off chip accesses requires nearly 50 wide

105

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Carpet Bag Cache Size (256−bit words)

M
is

s
R

at
e

DIS Data Management 2 MB Flying Carpet Bag Cache

Code

Stack

Data (General Cache)

Data (Off Chip)

Figure 7.4. DIS Data Management Carpet Bag Cache Miss Rate

words.

Unsurprisingly, as a general purpose cache also proved highly effective. Roughly

the same number of wide words achieved over a 90% hit rate.

Capturing the stack required nearly 10 wide words to achieve the same 90%

hit rate. This is not surprising considering that the program is highly recursive.

Although, it should be noted, that one wide accounted for around 50% of those

hits.

The code was captured very effectively by one wide word, though, again, to

achieve a 90% hit rate required a larger number.

7.3.2 DIS FFT

Figure 7.5 shows that one wide word again captured a very significant number of

off-chip references. The off-chip data references fared exceptionally well. One wide

106

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Carpet Bag Cache Size (256−bit words)

M
is

s
R

at
e

DIS FFT 2 MB Flying Carpet Bag Cache

Code

Stack

Data (General Cache)

Data (Off Chip)

Figure 7.5. DIS FFT Carpet Bag Cache Miss Rate

word accounted for over 90% of them.

The code again required approximately 10 wide words to achieve the 90% hit

rate, however, once again, the first wide word accounted for a very larger percentage

of those hits.

As a general purpose cache, anything more than around 10 wide words was fairly

ineffective.

The stack data was captured relatively quickly.

7.3.3 DIS Method of Moments

The Method of Moments data was captured very efficiently in the look-back-only

configuration. As a general purpose cache, nearly 100 wide words (32 KB) were

required to achieve a 90% hit rate. This vividly demonstrates that the benchmark

exhibits low reuse. Furthermore, a 10 wide word buffer only eliminated 50% of the

107

10
0

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Carpet Bag Cache Size (256−bit words)

M
is

s
R

at
e

DIS Method of Moments 2 MB Flying Carpet Bag Cache

Code

Stack

Data (General Cache)

Data (Off Chip)

Figure 7.6. DIS Method of Moments Carpet Bag Cache Miss Rate

off chip accesses when used as a “look-back only” cache.

The stack and code references also required a relatively large number of words

to achieve a high hit rate. See Figure 7.6.

7.3.4 DIS Image Understanding

The Image Understanding is the only benchmark which exhibited a change in the

behavior of the carpet bag cache based on the size of the PIM node. Figure 7.7

shows the carpet bag cache miss rate for a 2 MB PIM, and Figure 7.8 shows the

miss rate for a 32 MB PIM. (Complete results can be found in Appendix E.)

As the size of the PIM increased, the general purpose carpet bag cache did not

change. However, the off-chip only carpet bag cache miss rate became significantly

worse as the PIM size got larger.

The code data was captured extremely quickly compared to the other bench-

108

10
0

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Carpet Bag Cache Size (256−bit words)

M
is

s
R

at
e

DIS Image Understanding 2 MB Flying Carpet Bag Cache

Code

Stack

Data (General Cache)

Data (Off Chip)

Figure 7.7. DIS Image Understanding Carpet Bag Cache Miss Rate (2 MB)

marks. Two wide words achieved a miss rate of only about 1%.

The stack also exhibits strange behavior. The miss rate is alway 100%. As

Section 3.8 shows, the number of accesses to the stack throughout the benchmark

is extremely low (on the order of 10 throughout the entire program), therefore it

should be expected that misses will be frequently generated.

7.3.5 Molecular Dynamics Simulation

Not surprisingly, approximately 10 wide words (320 bytes) captured over 90% of all

code accesses. The stack required only 5 wide words to capture almost all references.

The miss rates for the off-chip only and generalized data caches were virtually

the same throughout the runs. See Figure 7.9.

109

10
0

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Carpet Bag Cache Size (256−bit words)

M
is

s
R

at
e

DIS Image Understanding 32 MB Flying Carpet Bag Cache

Code

Stack

Data (General Cache)

Data (Off Chip)

Figure 7.8. DIS Image Understanding Carpet Bag Cache Miss Rate (32 MB)

10
0

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Carpet Bag Cache Size (256−bit words)

M
is

s
R

at
e

Molecular Dynamics Simulation 2 MB Flying Carpet Bag Cache

Code

Stack

Data (General and
Off Chip Only)

Figure 7.9. Molecular Dynamics Simulation Carpet Bag Cache Miss Rate

110

7.4 Conclusions

Instruction references are easily captured by 10 wide words. In general, the pre-

viously fetched wide word accounts for nearly half of all instruction references. In

this case, the carpet bag cache is highly effective in capturing the code for a mobile

thread.

Stack references generally required fewer wide words (5-7 to capture 90% of all

accesses). The Image Understanding and Data Management benchmarks are the

exception. In the case of the former, very few stack references are ever generated,

so a caching mechanism will prove highly regardless of its size. In the case of the

latter, a high degree of recursion makes the problem significantly more difficult.

However, a 50% success rate is virtually always achieved at the cost of only one

wide word. Considering that this small price could potentially cut the communica-

tion costs in half, its significance cannot be overstated.

In terms of Data configurations, the “look-back” only (low-cost, software) con-

figuration proved extremely effective. Not surprisingly, the general purpose cache

required between 16 and 32 KB to be effective – this corresponds roughly to the

size of a data cache on a modern workstation. On the other hand, storing only the

off-chip references in a buffer eliminated a very large number of thread migrations

at very low cost.

111

CHAPTER 8

CONCLUSIONS

This work examined the architectural parameters which effect program execution

on PIM arrays using data intensive benchmarks. Because these benchmarks exhibit

complex, non-uniform, memory request patterns, they proved to perfect test bed to

flush out optimizations for the construction of PIM nodes which are highly tuned to

take advantage of the low latency of on-node memory accesses. Furthermore, these

goals were achieved at relatively low PIM resource cost, when compared to current

parallel architectures.

The simulations executed constituted about 27,000 lines of code. Running the

entire benchmark suite examined in this thesis (excluding Shade, oo7, and other

runs used for verification) took a total of 1,173 hours.

8.1 Results

PIMs provide unique opportunities for low cost optimizations which would otherwise

be difficult or impossible to incorporate into the architecture, such an ordering data

to take advantage of the reuse of row buffers.

The paramount engineering problem, upon which this work was centered de-

termining how much physical memory a PIM needs to sustain significant program

execution; and, how the working set contained in that memory is best represented.

Although larger memory macros always improved performance, a 2 MB PIM proved

112

sufficiently large to capture the working set and provide long periods of uninter-

rupted execution. Furthermore, using the memory to hold large pages, rather than

as a cache, provided run lengths that were one to two orders of magnitude longer on

average. The low overhead of this approach (in terms of the number of bits needed

to represent the location of named data) makes it increasingly attractive.

Because large pages (256 KB and above, which provide few windows into the

address space for a given node) proved so attractive during the working set exper-

iments, simulation of a PIM array showed that this idea could be carried to the

extreme. Managing a global address space in which each PIM is responsible for

a single contiguous segment is extremely simple. The storage overhead (in terms

of page tables for both local and global translations) is minimized. Furthermore,

experimentation shows that individual nodes in the network communicate with a

small number of other nodes. This means that tiling can be performed to minimize

the overhead of communication by placing communicating nodes close together.

A simple execution model, involving the use of mobile threads was demonstrated

to take full advantage of the large page size by transferring the execution of a thread

from one node to another based on that thread’s demands for data. Of course, when

execution moves from one node to another, some data from the current node should

be carried to the new node. Experimentation confirmed that the amount of data

required is relatively small, on the order of hundreds of bytes.

Simulations conducted over a ring, mesh, and binary hypercube proved that

the tiling need not be optimized by anything other than the order in which the

programmer allocated data to be efficient. Furthermore, investing in more complex

network structures (ie, the hypercube over the mesh over the ring) clearly provides

tremendous benefit during this minimization.

Because any given node in the system will communicate with only a small number

113

of other nodes, resolving the physical location of any generated remote name can be

done with a very small remote access TLB. Simulation demonstrated that the size

of this TLB should be two large entries.

Finally, a simple caching mechanism, known as a carpet bag cache, was introduced

to capture: (1) data from the current node which is needed when the thread moves to

a new node; (2) the portion of the thread’s code which must be carried around; and

(3) the core of the thread’s stack which also must be mobile. Two possible carpet

bag cache implementations were examined. The most complex is a general purpose

cache which can move from node to node, while the simpler implementation focuses

on capturing only remote data. Both mechanisms proved highly effective in reducing

the number of remote accesses, but given the significantly lower overhead involved

in the largely software based remote data only caching scheme, combined with the

already low latency of a local access, the simpler mechanism proved superior.

8.2 A Design Point

Figure 8.1 shows the configuration of a sample PIM node designed around the data

derived in this thesis. The memory is organized into a large “global” area which

represents the portion of the global memory space for which the PIM is responsible.

This area holds large pages – potentially one large page. The local storage area,

which cannot be addressed by by other nodes, is small and used to store temporary

data (such as the contents of the thread’s stack data, cached remote accesses, and

remote address TLB). A small TLB is used to identify local accesses. Because there

are large pages in the global page area and the TLB is enough to hold the translation

for all of them, it will never miss. This serves to optimize the PIM for accessing

local data.

Chapter 6 shows that very long run lengths can be achieved with a single large

114

LOCAL
TLB } CARPET BAG

CACHE

MEMORY ACCESS
BUFFER

ADDRESS

TRANSLATED
ADDRESS

DATA

FOUND?

CODE (8 WIDE WORDS)

STACK (4 WIDE WORDS)

MEMORY MACRO

GLOBAL PAGE (BIG)

LOCAL (TEMPORARY)
STORAGE

THREAD BUFFER

SMALL I-CACHE

IF NOT,
FAULT

REMOTE ADDR. TLB (2 ENTRIES)

CACHED REMOTE (8 WIDE WORDS)

PROCESSOR

MEMORY
MGT.
UNIT

AGE TYPE ADDR (SMALL)

Figure 8.1. Proposed PIM Implementation

page on each node, however allowing for multiple pages would help to allow nodes

to be a part of a computer.

8.2.1 Thread Buffers and Their Size

A Thread Buffer, which is merely a carpet bag cache with some history of remote

address translation attached for routing the thread to its next node, is used to store

the important data associated with each thread on the PIM. This buffer, primarily

stored in the local storage area of the memory macro, can be backed up by small

caches. Since threads can hide the latency of a local memory accesses, only an

instruction buffer (or “cache”) would be needed. This buffer can be very small (on

the order of one wide word).

Simulation results indicate that approximately 8 wide words for code, 4 for the

stack, and 8 for remote data accesses would easily satisfy at least 90% of remote

memory requests. When these three cached types of information are combined

115

with a register file, a thread context is established for movement between nodes.

This corresponds to a thread context size of 20 wide words, or 640 bytes, which

represents everything that has to be moved when a thread changes location. This

is a relatively small cost to pay over a modern interconnection network. (It is in

fact less than 16% of a 4 KB page.) IN exchange for this relatively small cost, run

lengths improve by one to two orders of magnitude.

However, there is a tremendous advantage in implementing the carpet bag cache

in software (see Chapter 7) and storing the thread buffer in memory. Specifically, the

size and contents of the thread buffer could be controlled by software (and would

therefore be reconfigurable based on the demands of a given thread). Addresses

stored in the Memory Access Buffer (MAB) can be annotated with a type field to

indicate if they were instruction fetches, stack references, or data references (or,

there could be three separate memory access buffers). Assuming the MAB stores

N references of each type, the thread buffer could be configured to hold up to N

references for each. Highly recursive threads, for example, could have their thread

buffers reconfigured to hold a larger stack. Conversely, programs with high data

demands could use their thread buffer’s storage to hold a greater number of remotely

cached wide words.

It is therefore recommended that the size of the MAB be at least 16 entries for

code, 8 for the stack, and 16 for remote memory requests so that the system can

provide maximum flexibility.

8.3 Global Page Area

As was previously mentioned, the Global Page Area should be as large as possible.

However, experimentation in this work suggests that 2 MB is sufficient to hold a

valid working set for most benchmarks. On the other hand, 8 MB is more than

116

sufficient for any of them.

8.4 Future Work

This work assumed the availability of mobile threads on PIM nodes. The next step

is to validate the benchmarks in a true multi-threaded environment and examine

how the run lengths compare to the results in this work. Significant improvement

should be seen in applications which are thread aware. Determining the exact char-

acteristics of how that multi-threading impacts the memory system is perhaps the

most immediate outgrowth from this work. A simple run to completion thread pack-

age capable of interfacing with Shade simulations is currently under development.

Rewriting the benchmarks to take advantage of multi-threading, and determining

the exact impact of that design choice are clearly the next step in continuing this

research.

This rewrite would further allow future simulations to account for traffic to the

interconnection network as well as the memory macro. A true accounting of each

node’s utilization could also be made. When coupled with fabrication technology

parameters, extremely accurate simulations (in terms of timing parameters) of real

programs could be performed.

Additionally, developing a detached simulation of the Memory Access Buffer and

assessing its impact on the over architecture of a PIM node (beyond its size) would

provide valuable insight into the overall performance of a node.

Determining with absolute certainty the location of the Thread Buffer must be

done. While the local access hit rate is very high, in the presented design point

the thread buffer sits inside the memory macro. An off chip memory reference is

interpreted as “not here, check the thread buffer and if its still not found move

the thread.” The process of checking the thread buffer requires a trap into some

117

handler code (user or OS). The overhead of the trap may be very low (since switching

threads is assumed to cost no more than a jump), however, the actual code to

search the buffer may produce significant impact (particularly for stack references).

Determining the cost of that search by actually generating ASAP code to do it must

be done before a final implementation can be decided upon.

Finally, all of the experiments in this work focused on PIMs executing a single

program. Taking into account the effects of a multiprogrammed PIM system would

be of great value.

The end result of this effort would describe an efficient, latency tolerant, and

highly scalable PIM system architecture. Such a system would take full advantage of

the high local bandwidth inherent in PIM designs and would be capable of extremely

high throughput when compared to von Neumann machines.

118

APPENDIX A

BENCHMARK INSTRUCTION FREQUENCIES

Table A.1. DIS Data Management Instruction Frequency

Opcode Number Executed Percent of Total
lduw 1,823,758,820 20.3030
nop 1,358,021,525 15.1181
subcc 689,843,337 7.6797
stw 607,178,428 6.7594
ldf 516,894,948 5.7543
add 418,422,143 4.6581
or 362,854,498 4.0395
ba 355,021,409 3.9523
bne 322,093,820 3.5857
sethi 319,641,435 3.5584
fcmpes 211,585,442 2.3555
jmpl 203,061,080 2.2606
call 200,039,104 2.2269
fbg 171,881,802 1.9135
be 134,530,809 1.4977
restore 117,695,198 1.3102
save 117,695,198 1.3102
ldub 108,591,000 1.2089
sll 107,301,769 1.1945
stb 78,249,192 0.8711
sra 73,003,856 0.8127
be,a 57,417,793 0.6392
and 55,063,733 0.6130

119

Table A.1 (continued)
Opcode Number Executed Percent of Total
sub 42,599,327 0.4742
stf 38,981,397 0.4340
ble 38,853,637 0.4325
bl 33,547,045 0.3735
srl 32,323,512 0.3598
andcc 31,624,690 0.3521
bl,a 30,565,320 0.3403
fsubs 28,741,612 0.3200
fbule 26,347,615 0.2933
ldsb 26,049,924 0.2900
bge 25,242,728 0.2810
fbuge 20,923,496 0.2329
bne,a 19,373,176 0.2157
fmuls 19,232,412 0.2141
bneg 19,062,745 0.2122
fmovs 17,200,745 0.1915
lddf 11,986,823 0.1334
orcc 11,724,332 0.1305
bgu 10,649,006 0.1185
xor 10,096,584 0.1124
bcc 10,047,977 0.1119
addcc 8,547,664 0.0952
fstod 8,399,917 0.0935
bg 7,789,609 0.0867
fcmped 7,751,901 0.0863
mulscc 5,666,839 0.0631
bcs 5,127,316 0.0571
bleu 2,672,272 0.0297
ba,a 2,439,120 0.0272
fitod 2,195,312 0.0244
stfsr 2,024,290 0.0225
bge,a 1,499,277 0.0167
std 1,402,486 0.0156
fmuld 1,383,133 0.0154
ldfsr 1,330,732 0.0148
stdf 964,884 0.0107
faddd 836,337 0.0093
ble,a 676,314 0.0075
andn 672,227 0.0075
fcmpd 668,857 0.0074
fbne 665,369 0.0074

Table A.1 (continued)

120

Opcode Number Executed Percent of Total
fdtos 661,875 0.0074
fdivd 657,452 0.0073
ta 604,919 0.0067
fdtoi 603,999 0.0067
sth 527,679 0.0059
andncc 515,562 0.0057
bcc,a 353,524 0.0039
fnegs 320,691 0.0036
fbul 184,430 0.0021
rdy 171,891 0.0019
wry 171,891 0.0019
bcs,a 88,563 0.0010
bg,a 27,909 0.0003
lduh 21,917 0.0002
faligndata 16,759 0.0002
ldsh 7,857 0.0001
bpg,a,pt 7,403 0.0001
fsubd 7,003 0.0001
bple,a,pn 6,986 0.0001

TOTAL 8,982,726,833 100.0000

121

Table A.2. DIS FFT Instruction Frequency

Opcode Number Executed Percent of Total
lddf 1,688,226,044 18.3438
fmuld 1,190,479,683 12.9354
stdf 1,044,846,589 11.3530
faddd 1,034,885,966 11.2448
fsubd 1,000,675,338 10.8731
add 837,518,354 9.1003
sll 411,815,795 4.4747
or 254,070,109 2.7607
sethi 179,040,687 1.9454
subcc 157,356,132 1.7098
sub 147,078,143 1.5981
lduw 144,522,830 1.5703
smul 123,742,333 1.3446
jmpl 82,359,413 0.8949
fmovs 78,377,490 0.8516
bl 77,535,432 0.8425
nop 67,790,764 0.7366
stw 64,681,922 0.7028
call 61,933,811 0.6730
sra 61,017,877 0.6630
wry 40,750,493 0.4428
sdivcc 40,742,433 0.4427
bvc 40,736,063 0.4426
fnegs 34,249,390 0.3721
restore 30,545,961 0.3319
save 30,545,961 0.3319
fdivd 28,650,349 0.3113
fcmpd 28,650,279 0.3113
fsqrtd 28,650,228 0.3113
bge 21,890,759 0.2379
be 21,600,323 0.2347
bne 19,643,702 0.2134
andn 19,119,424 0.2077
addcc 19,112,047 0.2077
fitod 19,108,168 0.2076
ldf 19,106,876 0.2076
fbe,a 19,100,160 0.2075
fbe 9,550,076 0.1038
bg,a 5,821,489 0.0633
ble 5,342,695 0.0581

122

Table A.2 (continued)
Opcode Number Executed Percent of Total
be,a 2,824,912 0.0307
bl,a 1,902,418 0.0207
orcc 1,737,178 0.0189
ba 1,554,256 0.0169
bg 976,763 0.0106
ble,a 725,105 0.0079
srl 615,118 0.0067
bge,a 590,864 0.0064
and 521,732 0.0057
andcc 445,530 0.0048
bne,a 210,410 0.0023
bcc 57,468 0.0006
bcs 55,600 0.0006
bleu 35,938 0.0004
bcc,a 32,140 0.0003
std 16,042 0.0002
stf 9,879 0.0001
ldd 7,963 0.0001
ldsb 7,328 0.0001
bvs,a 6,323 0.0001
andncc 5,785 0.0001
bgu 5,583 0.0001

TOTAL 9,203,242,055 100.0000

123

Table A.3. DIS Method of Moments Instruction Frequency

Opcode Number Executed Percent of Total
lduw 9,731,390,348 17.9267
add 6,080,897,059 11.2019
or 4,882,324,368 8.9940
ldf 4,497,761,517 8.2855
sll 3,335,411,563 6.1443
sethi 3,053,604,033 5.6252
stw 2,168,994,501 3.9956
stf 2,016,558,664 3.7148
subcc 1,911,430,970 3.5211
mulscc 1,567,450,402 2.8875
nop 1,396,447,589 2.5725
fmuld 1,336,079,798 2.4613
lddf 1,221,285,624 2.2498
jmpl 989,332,870 1.8225
call 977,429,647 1.8006
faddd 973,614,067 1.7935
orcc 677,673,430 1.2484
bl 642,885,557 1.1843
bge 551,507,101 1.0160
srl 511,866,121 0.9429
bne 483,631,083 0.8909
addcc 462,063,060 0.8512
ble 461,240,923 0.8497
fsubd 432,908,578 0.7975
be 381,220,227 0.7023
andncc 364,610,589 0.6717
stdf 341,130,647 0.6284
sra 281,905,870 0.5193
rdy 280,679,270 0.5171
wry 280,679,270 0.5171
sub 224,235,223 0.4131
restore 212,069,733 0.3907
save 212,069,733 0.3907
bl,a 148,587,023 0.2737
fmovs 143,569,997 0.2645
bcs 133,670,036 0.2462
andn 105,755,818 0.1948
bg 89,411,681 0.1647
ba 86,071,863 0.1586
fnegs 81,824,077 0.1507

124

Table A.3 (continued)
Opcode Number Executed Percent of Total
std 79,312,326 0.1461
ldd 68,324,638 0.1259
be,a 67,295,413 0.1240
and 50,996,801 0.0939
bleu 47,898,572 0.0882
stb 43,023,202 0.0793
fabss 38,241,900 0.0704
bge,a 38,124,064 0.0702
ldub 32,041,303 0.0590
bg,a 18,032,911 0.0332
ldsb 15,792,707 0.0291
andcc 12,249,733 0.0226
bne,a 10,806,821 0.0199
bgu 4,552,418 0.0084
ble,a 3,538,784 0.0065
bcc 3,167,825 0.0058
xor 2,816,565 0.0052
lduh 2,299,171 0.0042
bpg,a,pt 2,070,327 0.0038
bple,a,pn 2,070,158 0.0038
fcmped 1,636,963 0.0030
sth 1,017,230 0.0019
stfsr 981,418 0.0018
fbul 958,661 0.0018
fdivd 842,974 0.0016
fitod 723,817 0.0013
ldfsr 653,378 0.0012
ldsh 511,100 0.0009
ba,a 477,264 0.0009
fdtoi 376,108 0.0007
bpos 363,845 0.0007
bpos,a 352,026 0.0006
fbule 351,373 0.0006
fcmpd 327,759 0.0006
fbne 327,722 0.0006
fbuge 326,976 0.0006
addc 125,223 0.0002
bcc,a 80,306 0.0001
bgu,a 77,387 0.0001

TOTAL 54,284,485,196 100.0000

125

Table A.4. DIS Image Understanding Instruction Frequency

Opcode Number Executed Percent of Total
add 7,887,502,617 16.5166
subcc 7,844,866,598 16.4273
ldsh 4,888,720,442 10.2371
sll 3,828,755,078 8.0175
ble 3,823,237,810 8.0059
lduh 3,248,945,809 6.8034
or 2,622,769,841 5.4921
be 2,201,865,154 4.6107
ldub 2,198,705,414 4.6041
bne 1,720,496,949 3.6028
addcc 1,688,317,218 3.5354
sth 1,628,104,413 3.4093
sra 1,624,052,220 3.4008
bl,a 1,623,312,181 3.3992
lduw 156,659,421 0.3280
ldf 116,441,809 0.2438
sethi 91,907,036 0.1925
stw 70,431,448 0.1475
bl 68,691,571 0.1438
sub 66,140,907 0.1385
bg 63,086,929 0.1321
lddf 58,575,275 0.1227
nop 58,463,713 0.1224
fbule 57,671,936 0.1208
fcmpes 57,670,801 0.1208
bne,a 19,906,285 0.0417
mulscc 5,419,609 0.0113
be,a 5,124,671 0.0107
bge 4,071,407 0.0085
srl 3,473,737 0.0073
call 2,227,312 0.0047
jmpl 2,205,987 0.0046
orcc 1,823,370 0.0038
bgu 1,634,244 0.0034
bleu,a 1,622,593 0.0034
andncc 1,242,717 0.0026
restore 803,678 0.0017
save 803,678 0.0017
faligndata 801,774 0.0017
ba 737,057 0.0015

126

Table A.4 (continued)
Opcode Number Executed Percent of Total
faddd 637,992 0.0013
bg,a 635,040 0.0013
stf 539,520 0.0011
stdf 483,241 0.0010
fmuld 481,417 0.0010
rdy 448,193 0.0009
wry 448,193 0.0009
fitod 374,821 0.0008
bleu 340,697 0.0007
fadds 275,172 0.0006
andn 269,679 0.0006
bcs 251,273 0.0005
and 230,399 0.0005
fitos 224,128 0.0005
ble,a 214,987 0.0005
std 201,796 0.0004
fsubd 187,370 0.0004
ldd 149,552 0.0003
xor 114,204 0.0002
bge,a 114,117 0.0002
fcmpd 113,428 0.0002
fdtoi 112,655 0.0002
fble 112,064 0.0002
fstod 111,852 0.0002
bpe,pn 99,515 0.0002
lddfa 97,674 0.0002
stdfa 97,527 0.0002
andcc 75,027 0.0002
stb 70,539 0.0001
fdivd 39,497 0.0001
fdtos 37,495 0.0001
ldsb 35,124 0.0001
bpa,a,pt 32,050 0.0001
bcc 28,475 0.0001

TOTAL 47,755,056,628 100.0000

127

Table A.5. DIS SAR Ray Tracing Instruction Frequency

Opcode Number Executed Percent of Total
lduw 46,243,892 12.6216
subcc 44,528,100 12.1533
stw 37,447,853 10.2209
add 34,029,948 9.2880
or 24,000,280 6.5506
sethi 19,041,814 5.1972
be 14,275,074 3.8962
jmpl 12,710,449 3.4691
ldub 12,006,596 3.2770
call 9,656,516 2.6356
sub 8,570,149 2.3391
nop 8,478,687 2.3141
andcc 7,803,957 2.1300
bne 6,482,742 1.7694
save 6,316,891 1.7241
restore 6,316,890 1.7241
ba 5,277,937 1.4405
ldf 5,202,178 1.4199
sll 5,028,522 1.3725
be,a 4,958,660 1.3534
stb 4,217,232 1.1510
bge 4,127,542 1.1266
bl 3,319,375 0.9060
bneg 3,231,544 0.8820
bgu 2,685,166 0.7329
ldsb 2,571,200 0.7018
bne,a 2,453,264 0.6696
stf 2,263,505 0.6178
bg 1,781,428 0.4862
ble 1,617,015 0.4413
lddf 1,557,004 0.4250
sra 1,209,887 0.3302
bl,a 1,134,890 0.3098
orcc 1,043,893 0.2849
fcmpes 1,013,117 0.2765
bge,a 839,263 0.2291
fstod 827,237 0.2258
fdtos 728,069 0.1987
stdf 620,816 0.1694
stfsr 619,573 0.1691

128

Table A.5 (continued)
Opcode Number Executed Percent of Total
fbuge 619,553 0.1691
fcmped 573,928 0.1566
fsubs 508,374 0.1388
fbule 507,047 0.1384
fdivs 506,519 0.1382
and 482,634 0.1317
fcmpd 459,933 0.1255
fbne 459,806 0.1255
srl 418,487 0.1142
std 415,195 0.1133
fmuld 413,229 0.1128
fsubd 413,054 0.1127
ldfsr 413,042 0.1127
bg,a 362,227 0.0989
fbg 354,530 0.0968
bcs 232,979 0.0636
andn 209,398 0.0572
xor 208,434 0.0569
fmovs 207,643 0.0567
bcc,a 207,126 0.0565
ble,a 207,023 0.0565
bcs,a 206,646 0.0564
faddd 206,629 0.0564
fdivd 206,493 0.0564
fitod 206,406 0.0563
fabss 206,400 0.0563
sllx 157,259 0.0429
fbl 105,228 0.0287
addcc 91,792 0.0251
fnegs 88,775 0.0242
bpos 78,758 0.0215
addc 78,635 0.0215
movrlz 78,629 0.0215
mulx 78,629 0.0215
srax 78,629 0.0215
bcc 76,759 0.0210
bleu 3,840 0.0010
lduh 3,211 0.0009
mulscc 2,857 0.0008
fmuls 2,412 0.0007
ta 1,388 0.0004

129

Table A.5 (continued)
Opcode Number Executed Percent of Total
fadds 1,209 0.0003
ba,a 1,160 0.0003
bpg,a,pt 782 0.0002
bple,a,pn 767 0.0002
fbul 693 0.0002
andncc 658 0.0002
sth 399 0.0001
ldd 341 0.0001
bgu,a 314 0.0001
rdy 253 0.0001
wry 253 0.0001
ldsh 250 0.0001

TOTAL 366,385,719 100.0000

130

Table A.6. Molecular Dynamics Simulation Instruction Frequency

Opcode Number Executed Percent of Total
lddf 530,476,356 28.1821
add 273,367,562 14.5229
fmuld 228,411,606 12.1346
fsubd 154,799,406 8.2239
faddd 154,338,946 8.1994
stdf 69,100,689 3.6710
subcc 64,419,300 3.4223
bl,a 47,572,647 2.5273
fcmped 45,619,659 2.4236
nop 43,623,831 2.3176
fbg,a 40,312,500 2.1416
or 32,950,788 1.7505
fmovs 32,881,218 1.7468
lduw 32,872,462 1.7464
sethi 20,644,107 1.0967
stw 16,792,652 0.8921
sll 9,411,812 0.5000
call 8,163,767 0.4337
jmpl 8,040,871 0.4272
sub 7,319,085 0.3888
fdivd 6,807,119 0.3616
fbule,a 5,307,091 0.2819
be 3,207,566 0.1704
restore 2,690,005 0.1429
save 2,690,005 0.1429
andn 2,252,666 0.1197
bl 2,145,484 0.1140
be,a 2,099,689 0.1115
and 1,994,345 0.1060
ba 1,899,267 0.1009
bge 1,802,616 0.0958
bg 1,750,881 0.0930
sra 1,594,185 0.0847
bne 1,548,872 0.0823
std 1,527,922 0.0812
smul 1,421,883 0.0755
stf 1,344,809 0.0714
andcc 1,253,704 0.0666
ble,a 1,253,311 0.0666
fitod 1,226,676 0.0652

131

Table A.6 (continued)
Opcode Number Executed Percent of Total
orcc 1,169,555 0.0621
srl 1,074,373 0.0571
ldf 1,015,112 0.0539
bg,a 922,589 0.0490
faligndata 797,410 0.0424
ldub 754,261 0.0401
stb 751,615 0.0399
wry 687,760 0.0365
sdivcc 687,504 0.0365
ldd 656,454 0.0349
fdtoi 609,884 0.0324
ble 584,723 0.0311
bge,a 556,951 0.0296
bne,a 505,627 0.0269
bpe,pn 422,139 0.0224
bcc 408,816 0.0217
bleu 385,261 0.0205
bpg,pn 375,271 0.0199
bvs,a 375,004 0.0199
bcs 343,495 0.0182
andncc 338,269 0.0180
bvc 312,500 0.0166
fabss 290,962 0.0155
fnegs 261,981 0.0139
fsqrtd 250,001 0.0133
bcc,a 141,194 0.0075
bgu 110,958 0.0059
bpe,pt 93,796 0.0050
wrfprs 93,796 0.0050
bcs,a 86,038 0.0046
bpg,a,pt 62,560 0.0033
bgu,a 46,919 0.0025
alignaddr 46,898 0.0025
bpe,a,pn 46,898 0.0025
rdfprs 46,898 0.0025
bple,a,pn 15,662 0.0008
subc 15,624 0.0008
addcc 11,982 0.0006
ldsb 7,067 0.0004
ta 5,652 0.0003
mulscc 2,884 0.0002

132

Table A.6 (continued)
Opcode Number Executed Percent of Total
xor 2,102 0.0001
ba,a 1,177 0.0001
lduh 1,035 0.0001

TOTAL 1,882,315,390 100.0000

133

APPENDIX B

UNABRIDGED WORKING SET CIPD (Ψ(L)) RESULTS

B.1 DIS Data Management

B.1.1 Page Configurations

10
3

10
4

10
5

10
6

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

1024 Pages

512

256

128
64

32

16

842

DIS Data Management −− 4k DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.1. DIS Data Management 4 KB Page CIPD (Ψ)

134

10
3

10
4

10
5

10
6

10
7

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

512 Pages

256

128

64

32

16

842

DIS Data Management −− 8K DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.2. DIS Data Management 8 KB Page CIPD (Ψ)

10
3

10
4

10
5

10
6

10
7

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

256 Pages

128

64

32

16

8

42

DIS Data Management −− 16K DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.3. DIS Data Management 16 KB Page CIPD (Ψ)

135

10
3

10
4

10
5

10
6

10
7

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

128 Pages

64

32

16

8

42

DIS Data Management −− 32K DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.4. DIS Data Management 32 KB Page CIPD (Ψ)

10
3

10
4

10
5

10
6

10
7

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

64 Pages

32

16

8

42

DIS Data Management −− 64K DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.5. DIS Data Management 64 KB Page CIPD (Ψ)

136

10
3

10
4

10
5

10
6

10
7

10
8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

32 Pages

16

8

4

2

DIS Data Management −− 128K DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.6. DIS Data Management 128 KB Page CIPD (Ψ)

10
3

10
4

10
5

10
6

10
7

10
8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

16 Pages

8

4

2

DIS Data Management −− 256K DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.7. DIS Data Management 256 KB Page CIPD (Ψ)

137

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

64 Pages

32

16

42

DIS Data Management −− 4K CODE

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.8. DIS Data Management 4 KB (Code and Stack) KB Page CIPD (Ψ)

138

B.1.2 Cache Configurations

10
3

10
4

10
5

10
6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
1 MB Cache Cumulative Instruction Probability Density

Instructions

P
ro

ba
bi

lit
y

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure B.9. DIS Data Management 1 MB Data Cache CIPD (Ψ)

139

10
3

10
4

10
5

10
6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
2 MB Cache Cumulative Instruction Probability Density

Instructions

P
ro

ba
bi

lit
y

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure B.10. DIS Data Management 2 MB Data Cache CIPD (Ψ)

10
3

10
4

10
5

10
6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
4 MB Cache Cumulative Instruction Probability Density

Instructions

P
ro

ba
bi

lit
y

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure B.11. DIS Data Management 4 MB Data Cache CIPD (Ψ)

140

10
3

10
4

10
5

10
6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
8 MB Cache Cumulative Instruction Probability Density

Instructions

P
ro

ba
bi

lit
y

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure B.12. DIS Data Management 8 MB Data Cache CIPD (Ψ)

10
3

10
4

10
5

10
6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
16 MB Cache Cumulative Instruction Probability Density

Instructions

P
ro

ba
bi

lit
y

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure B.13. DIS Data Management 16 MB Data Cache CIPD (Ψ)

141

10
3

10
4

10
5

10
6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
32 MB Cache Cumulative Instruction Probability Density

Instructions

P
ro

ba
bi

lit
y

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure B.14. DIS Data Management 32 MB Data Cache CIPD (Ψ)

142

B.2 DIS FFT

B.2.1 Page Configurations

10
3

10
4

10
5

10
6

10
7

10
8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

4096 and 8192 Pages

256, 1024, 2048

64

32

168

4

2

DIS FFT −− 4k DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.15. DIS FFT 4 KB Page CIPD (Ψ)

143

10
3

10
4

10
5

10
6

10
7

10
8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

2048 and 4096 Pages

256, 512, and 1024

32

16

8
4

2

DIS FFT −− 8K DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.16. DIS FFT 8 KB Page CIPD (Ψ)

10
3

10
4

10
5

10
6

10
7

10
8

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

2048 Pages
1024

256

16

8

4

2

DIS FFT −− 16K DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.17. DIS FFT 16 KB Page CIPD (Ψ)

144

10
3

10
4

10
5

10
6

10
7

10
8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

1024 Pages
512

256

16

8

4

2

DIS FFT −− 32K DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.18. DIS FFT 32 KB Page CIPD (Ψ)

10
3

10
4

10
5

10
6

10
7

10
8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

512 Pages
256

8, 16, and 32

4

2

DIS FFT −− 64K DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.19. DIS FFT 64 KB Page CIPD (Ψ)

145

10
3

10
4

10
5

10
6

10
7

10
8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

256 Pages
128

8, 16

4

2

DIS FFT −− 128K DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.20. DIS FFT 128 KB Page CIPD (Ψ)

10
3

10
4

10
5

10
6

10
7

10
8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

128 Pages
64

16
8

4

2

DIS FFT −− 256K DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.21. DIS FFT 256 KB Page CIPD (Ψ)

146

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

32 Pages

16

8

4

2

DIS FFT −− 4K CODE

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.22. DIS FFT 4 KB (Code and Stack) KB Page CIPD (Ψ)

147

B.2.2 Cache Configurations

10
3

10
4

10
5

10
6

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
1 MB Cache Cumulative Instruction Probability Density

Instructions

P
ro

ba
bi

lit
y

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure B.23. DIS FFT 1 MB Data Cache CIPD (Ψ)

148

10
3

10
4

10
5

10
6

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02
2 MB Cache Cumulative Instruction Probability Density

Instructions

P
ro

ba
bi

lit
y

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure B.24. DIS FFT 2 MB Data Cache CIPD (Ψ)

10
3

10
4

10
5

10
6

0

0.002

0.004

0.006

0.008

0.01

0.012
4 MB Cache Cumulative Instruction Probability Density

Instructions

P
ro

ba
bi

lit
y

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure B.25. DIS FFT 4 MB Data Cache CIPD (Ψ)

149

10
3

10
4

10
5

10
6

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01
8 MB Cache Cumulative Instruction Probability Density

Instructions

P
ro

ba
bi

lit
y

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure B.26. DIS FFT 8 MB Data Cache CIPD (Ψ)

10
3

10
4

10
5

10
6

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−3 16 MB Cache Cumulative Instruction Probability Density

Instructions

P
ro

ba
bi

lit
y

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure B.27. DIS FFT 16 MB Data Cache CIPD (Ψ)

150

10
3

10
4

10
5

10
6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−3 32 MB Cache Cumulative Instruction Probability Density

Instructions

P
ro

ba
bi

lit
y

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure B.28. DIS FFT 32 MB Data Cache CIPD (Ψ)

151

B.3 DIS Method of Moments

B.3.1 Page Configurations

10
3

10
4

10
5

10
6

10
7

10
8

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

1024 Pages 128, 256

16, 32

8

4

2

DIS Method of Moments −− 4k DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.29. DIS Method of Moments 4 KB Page CIPD (Ψ)

152

10
3

10
4

10
5

10
6

10
7

10
8

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

512 Pages 64

16

4

2

DIS Method of Moments −− 8K DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.30. DIS Method of Moments 8 KB Page CIPD (Ψ)

10
3

10
4

10
5

10
6

10
7

10
8

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

256 Pages
32,64

16

4

2

DIS Method of Moments −− 16K DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.31. DIS Method of Moments 16 KB Page CIPD (Ψ)

153

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

64, 128, and 256 Pages
32

16

4

2

DIS Method of Moments −− 32K DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.32. DIS Method of Moments 32 KB Page CIPD (Ψ)

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

64 and 128 Pages
32

16

4

2

DIS Method of Moments −− 64K DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.33. DIS Method of Moments 64 KB Page CIPD (Ψ)

154

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

16 Pages

84

2

DIS Method of Moments −− 128K DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.34. DIS Method of Moments 128 KB Page CIPD (Ψ)

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

16 Pages

84

2

DIS Method of Moments −− 256K DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.35. DIS Method of Moments 256 KB Page CIPD (Ψ)

155

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

32 Pages

16

8

DIS Method of Moments −− 4K CODE

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.36. DIS Method of Moments 4 KB (Code and Stack) KB Page CIPD (Ψ)

156

B.3.2 Cache Configurations

10
3

10
4

10
5

10
6

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
1 MB Cache Cumulative Instruction Probability Density

Instructions

P
ro

ba
bi

lit
y

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure B.37. DIS Method of Moments 1 MB Data Cache CIPD (Ψ)

157

10
3

10
4

10
5

10
6

10
7

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
2 MB Cache Cumulative Instruction Probability Density

Instructions

P
ro

ba
bi

lit
y

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure B.38. DIS Method of Moments 2 MB Data Cache CIPD (Ψ)

10
3

10
4

10
5

10
6

10
7

10
8

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
4 MB Cache Cumulative Instruction Probability Density

Instructions

P
ro

ba
bi

lit
y

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure B.39. DIS Method of Moments 4 MB Data Cache CIPD (Ψ)

158

10
3

10
4

10
5

10
6

10
7

10
8

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
8 MB Cache Cumulative Instruction Probability Density

Instructions

P
ro

ba
bi

lit
y

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure B.40. DIS Method of Moments 8 MB Data Cache CIPD (Ψ)

10
3

10
4

10
5

10
6

10
7

10
8

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
16 MB Cache Cumulative Instruction Probability Density

Instructions

P
ro

ba
bi

lit
y

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure B.41. DIS Method of Moments 16 MB Data Cache CIPD (Ψ)

159

10
3

10
4

10
5

10
6

10
7

10
8

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
32 MB Cache Cumulative Instruction Probability Density

Instructions

P
ro

ba
bi

lit
y

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure B.42. DIS Method of Moments 32 MB Data Cache CIPD (Ψ)

160

B.4 DIS Image Understanding

B.4.1 Page Configurations

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

2048 Pages

1024

DIS Image Understanding −− 4k DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.43. DIS Image Understanding 4 KB Page CIPD (Ψ)

161

10
4

10
5

10
6

10
7

10
8

10
9

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

1024 Pages

512

DIS Image Understanding −− 8K DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.44. DIS Image Understanding 8 KB Page CIPD (Ψ)

10
4

10
5

10
6

10
7

10
8

10
9

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

512 Pages

256

DIS Image Understanding −− 16K DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.45. DIS Image Understanding 16 KB Page CIPD (Ψ)

162

10
4

10
5

10
6

10
7

10
8

10
9

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

256 Pages

128

DIS Image Understanding −− 32K DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.46. DIS Image Understanding 32 KB Page CIPD (Ψ)

10
4

10
5

10
6

10
7

10
8

10
9

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

128 Pages

64

DIS Image Understanding −− 64K DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.47. DIS Image Understanding 64 KB Page CIPD (Ψ)

163

10
4

10
5

10
6

10
7

10
8

10
9

10
−4

10
−3

10
−2

10
−1

10
0

64 Pages

32

DIS Image Understanding −− 128K DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.48. DIS Image Understanding 128 KB Page CIPD (Ψ)

10
5

10
6

10
7

10
8

10
9

10
−4

10
−3

10
−2

10
−1

10
0

32 Pages

16

DIS Image Understanding −− 256K DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.49. DIS Image Understanding 256 KB Page CIPD (Ψ)

164

10
6

10
7

10
8

10
9

10
−4

10
−3

10
−2

10
−1

10
0

4 Pages

DIS Image Understanding −− 4K CODE

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.50. DIS Image Understanding 4 KB (Code and Stack) KB Page CIPD (Ψ)

165

B.4.2 Cache Configurations

10
2

10
3

10
4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
1 MB Cache Cumulative Instruction Probability Density

Instructions

P
ro

ba
bi

lit
y

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure B.51. DIS Image Understanding 1 MB Data Cache CIPD (Ψ)

166

10
2

10
3

10
4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
2 MB Cache Cumulative Instruction Probability Density

Instructions

P
ro

ba
bi

lit
y

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure B.52. DIS Image Understanding 2 MB Data Cache CIPD (Ψ)

10
2

10
3

10
4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
4 MB Cache Cumulative Instruction Probability Density

Instructions

P
ro

ba
bi

lit
y

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure B.53. DIS Image Understanding 4 MB Data Cache CIPD (Ψ)

167

10
3

10
4

10
5

10
6

10
7

10
8

10
9

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3 8 MB Cache Cumulative Instruction Probability Density

Instructions

P
ro

ba
bi

lit
y

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure B.54. DIS Image Understanding 8 MB Data Cache CIPD (Ψ)

10
3

10
4

10
5

10
6

10
7

10
8

10
9

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3 16 MB Cache Cumulative Instruction Probability Density

Instructions

P
ro

ba
bi

lit
y

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure B.55. DIS Image Understanding 16 MB Data Cache CIPD (Ψ)

168

10
3

10
4

10
5

10
6

10
7

10
8

10
9

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3 32 MB Cache Cumulative Instruction Probability Density

Instructions

P
ro

ba
bi

lit
y

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure B.56. DIS Image Understanding 32 MB Data Cache CIPD (Ψ)

169

B.5 DIS Ray Tracing

B.5.1 Page Configurations

10
3

10
4

10
5

10
6

10
7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

1024 Pages

32

168
2

DIS SAR Ray Tracing −− 4k DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.57. DIS Ray Tracing 4 KB Page CIPD (Ψ)

170

10
3

10
4

10
5

10
6

10
7

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

512 Pages

32

168

2

DIS SAR Ray Tracing −− 8K DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.58. DIS Ray Tracing 8 KB Page CIPD (Ψ)

10
3

10
4

10
5

10
6

10
7

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

256 Pages

4, 8 and 16

2

DIS SAR Ray Tracing −− 16K DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.59. DIS Ray Tracing 16 KB Page CIPD (Ψ)

171

10
3

10
4

10
5

10
6

10
7

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

128 Pages

16, 32, 64
2, 4, and 8

DIS SAR Ray Tracing −− 32K DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.60. DIS Ray Tracing 32 KB Page CIPD (Ψ)

10
3

10
4

10
5

10
6

10
7

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

32, 64, and 128 P

2, 4, 8, 16

DIS SAR Ray Tracing −− 64K DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.61. DIS Ray Tracing 64 KB Page CIPD (Ψ)

172

10
3

10
4

10
5

10
6

10
7

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

64 Pages

32

8

4

2

DIS SAR Ray Tracing −− 128K DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.62. DIS Ray Tracing 128 KB Page CIPD (Ψ)

10
3

10
4

10
5

10
6

10
7

10
−4

10
−3

10
−2

10
−1

10
0

32 Pages

168

4

2

DIS SAR Ray Tracing −− 256K DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.63. DIS Ray Tracing 256 KB Page CIPD (Ψ)

173

10
3

10
4

10
5

10
6

10
7

10
8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

64 Pages

32

16

8

4

2

DIS SAR Ray Tracing −− 4K CODE

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.64. DIS Ray Tracing 4 KB (Code and Stack) KB Page CIPD (Ψ)

174

B.5.2 Cache Configurations

10
3

10
4

10
5

10
6

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
1 MB Cache Cumulative Instruction Probability Density

Instructions

P
ro

ba
bi

lit
y

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure B.65. DIS Ray Tracing 1 MB Data Cache CIPD (Ψ)

175

10
3

10
4

10
5

10
6

10
7

0

0.005

0.01

0.015

0.02

0.025
2 MB Cache Cumulative Instruction Probability Density

Instructions

P
ro

ba
bi

lit
y

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure B.66. DIS Ray Tracing 2 MB Data Cache CIPD (Ψ)

10
3

10
4

10
5

10
6

10
7

0

0.005

0.01

0.015

0.02

0.025
4 MB Cache Cumulative Instruction Probability Density

Instructions

P
ro

ba
bi

lit
y

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure B.67. DIS Ray Tracing 4 MB Data Cache CIPD (Ψ)

176

10
3

10
4

10
5

10
6

10
7

0

1

2

3

4

5

6
x 10

−3 8 MB Cache Cumulative Instruction Probability Density

Instructions

P
ro

ba
bi

lit
y

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure B.68. DIS Ray Tracing 8 MB Data Cache CIPD (Ψ)

10
3

10
4

10
5

10
6

10
7

0

0.002

0.004

0.006

0.008

0.01

0.012
16 MB Cache Cumulative Instruction Probability Density

Instructions

P
ro

ba
bi

lit
y

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure B.69. DIS Ray Tracing 16 MB Data Cache CIPD (Ψ)

177

10
3

10
4

10
5

10
6

10
7

0

1

2

3

4

5

6
x 10

−3 32 MB Cache Cumulative Instruction Probability Density

Instructions

P
ro

ba
bi

lit
y

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure B.70. DIS Ray Tracing 32 MB Data Cache CIPD (Ψ)

178

B.6 Molecular Dynamics Simulation

B.6.1 Page Configurations

10
3

10
4

10
5

10
6

10
7

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

256, 512, 1024, 2048
4096, and 8192 Pages 64, 128

32

16

8

4

Molecular Dynamics Simulation −− 4k DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.71. Molecular Dynamics Simulation 4 KB Page CIPD (Ψ)

179

10
3

10
4

10
5

10
6

10
7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

256, 512, 1024,
2048, and 4096 Pages

64
32

16

8

4

Molecular Dynamics Simulation −− 8K DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.72. Molecular Dynamics Simulation 8 KB Page CIPD (Ψ)

10
3

10
4

10
5

10
6

10
7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

128, 256, 512
1024, 2048 Pages 32, 64

16

8

4

Molecular Dynamics Simulation −− 16K DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.73. Molecular Dynamics Simulation 16 KB Page CIPD (Ψ)

180

10
3

10
4

10
5

10
6

10
7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

64, 128, 512
and 1024 Pages

16, 32

8

4

2

Molecular Dynamics Simulation −− 32K DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.74. Molecular Dynamics Simulation 32 KB Page CIPD (Ψ)

10
3

10
4

10
5

10
6

10
7

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

64, 128, 256
and 512 Pages3216

8

4

2

Molecular Dynamics Simulation −− 64K DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.75. Molecular Dynamics Simulation 64 KB Page CIPD (Ψ)

181

10
3

10
4

10
5

10
6

10
7

10
8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

256 Pages
32, 64, 12816

8

4

2

Molecular Dynamics Simulation −− 128K DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.76. Molecular Dynamics Simulation 128 KB Page CIPD (Ψ)

10
3

10
4

10
5

10
6

10
7

10
8

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

128 Pages
16, 32, 64

8

4

2

Molecular Dynamics Simulation −− 256K DATA

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.77. Molecular Dynamics Simulation 256 KB Page CIPD (Ψ)

182

10
7

10
8

10
9

10
−2

10
−1

10
0

Molecular Dynamics Simulation −− 4K CODE

P
ro

ba
bi

lit
y

(C
um

ul
at

iv
e

to
 th

e
R

ig
ht

)

Instruction Counts Between Misses

Figure B.78. Molecular Dynamics Simulation 4 KB (Code and Stack) KB Page
CIPD (Ψ)

183

B.6.2 Cache Configurations

10
3

10
4

10
5

0

0.05

0.1

0.15

0.2

0.25
1 MB Cache Cumulative Instruction Probability Density

Instructions

P
ro

ba
bi

lit
y

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure B.79. Molecular Dynamics Simulation 1 MB Data Cache CIPD (Ψ)

184

10
3

10
4

10
5

0

0.05

0.1

0.15

0.2

0.25
2 MB Cache Cumulative Instruction Probability Density

Instructions

P
ro

ba
bi

lit
y

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure B.80. Molecular Dynamics Simulation 2 MB Data Cache CIPD (Ψ)

10
3

10
4

10
5

0

0.05

0.1

0.15

0.2

0.25
4 MB Cache Cumulative Instruction Probability Density

Instructions

P
ro

ba
bi

lit
y

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure B.81. Molecular Dynamics Simulation 4 MB Data Cache CIPD (Ψ)

185

10
3

10
4

10
5

0

0.05

0.1

0.15

0.2

0.25
8 MB Cache Cumulative Instruction Probability Density

Instructions

P
ro

ba
bi

lit
y

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure B.82. Molecular Dynamics Simulation 8 MB Data Cache CIPD (Ψ)

10
3

10
4

10
5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
16 MB Cache Cumulative Instruction Probability Density

Instructions

P
ro

ba
bi

lit
y

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure B.83. Molecular Dynamics Simulation 16 MB Data Cache CIPD (Ψ)

186

10
3

10
4

10
5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
32 MB Cache Cumulative Instruction Probability Density

Instructions

P
ro

ba
bi

lit
y

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Figure B.84. Molecular Dynamics Simulation 32 MB Data Cache CIPD (Ψ)

187

APPENDIX C

UNABRIDGED WORKING SET PAGE MISS RATE RESULTS

C.1 DIS Data Management

10
0

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

4k

8k

16k
32k

64k

128k256k

Number of Pages

M
is

s
R

at
e

DIS Data Management −− Segment Miss Rate −− Data Only

Figure C.1. DIS Data Management Data Miss Rate

188

10
0

10
1

10
2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of Pages

M
is

s
R

at
e

DIS Data Management −− Segment Miss Rate −− Code and Stack

4K CODE
4K STACK

Figure C.2. DIS Data Management Code and Stack Miss Rate

189

C.2 DIS FFT

10
0

10
1

10
2

10
3

10
4

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

4k
8k

16k
32k

64k

128k
256k

Number of Pages

M
is

s
R

at
e

DIS FFT −− Segment Miss Rate −− Data Only

Figure C.3. DIS FFT Data Miss Rate

10
0

10
1

10
2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of Pages

M
is

s
R

at
e

DIS FFT −− Segment Miss Rate −− Code and Stack

4K CODE
4K STACK

Figure C.4. DIS FFT Code and Stack Miss Rate

190

C.3 DIS Method of Moments

10
0

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

4k
8k

16k
32k

64k
128k

256k

Number of Pages

M
is

s
R

at
e

DIS Method of Moments −− Segment Miss Rate −− Data Only

Figure C.5. DIS Method of Moments Data Miss Rate

10
0

10
1

10
2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of Pages

M
is

s
R

at
e

DIS Method of Moments −− Segment Miss Rate −− Code and Stack

4K CODE
4K STACK

Figure C.6. DIS Method of Moments Code and Stack Miss Rate

191

C.4 DIS Image Understanding

10
0

10
1

10
2

10
3

10
4

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

4k

8k
16k

32k

64k

128k

256k

Number of Pages

M
is

s
R

at
e

DIS Image Understanding −− Segment Miss Rate −− Data Only

Figure C.7. DIS Image Understanding Data Miss Rate

192

C.5 DIS Ray Tracing

10
0

10
1

10
2

10
3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

4k

8k

16k
32k

64k
128k

256k

Number of Pages

M
is

s
R

at
e

DIS SAR Ray Tracing −− Segment Miss Rate −− Data Only

Figure C.8. DIS SAR Ray Tracing Data Miss Rate

10
0

10
1

10
2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of Pages

M
is

s
R

at
e

DIS SAR Ray Tracing −− Segment Miss Rate −− Code and Stack

4K CODE
4K STACK

Figure C.9. DIS SAR Ray Tracing Code and Stack Miss Rate

193

C.6 Molecular Dynamics Simulation

10
0

10
1

10
2

10
3

10
4

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

4k
8k

16k
32k

64k

128k

256k

Number of Pages

M
is

s
R

at
e

Molecular Dynamics Simulation −− Segment Miss Rate −− Data Only

Figure C.10. Molecular Dynamics Simulation Overall Miss Rate

194

APPENDIX D

UNABRIDGED REMOTE NAME TRANSLATION MECHANISM RESULTS

1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

M
is

s
R

at
e

Number of Available Translations

2 MB PIM SIZE −− Remote Memory Access Translation Mechanism

DIS Data Management

DIS Image Understanding

DIS
Method of
Moments

DIS Ray Tracing

DIS FFT

MD SImulation

Figure D.1. Remote Name Translation Mechanism Miss Rate (2 MB PIM)

195

1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

M
is

s
R

at
e

Number of Available Translations

4 MB PIM SIZE −− Remote Memory Access Translation Mechanism

DIS Data Management

DIS
Image
Understanding

DIS
Method of
Moments

DIS FFT

Figure D.2. Remote Name Translation Mechanism Miss Rate (4 MB PIM)

1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

M
is

s
R

at
e

Number of Available Translations

8 MB PIM SIZE −− Remote Memory Access Translation Mechanism

DIS Data Management

DIS
Image
Understanding

DIS
Method of
Moments

DIS FFT

Figure D.3. Remote Name Translation Mechanism Miss Rate (8 MB PIM)

196

1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

M
is

s
R

at
e

Number of Available Translations

16 MB PIM SIZE −− Remote Memory Access Translation Mechanism

DIS Data Management

DIS Method of Moments

DIS
Image
Understanding

DIS FFT

Figure D.4. Remote Name Translation Mechanism Miss Rate (16 MB PIM)

1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

M
is

s
R

at
e

Number of Available Translations

32 MB PIM SIZE −− Remote Memory Access Translation Mechanism

DIS Data Management

DIS Method of Moments

Figure D.5. Remote Name Translation Mechanism Miss Rate (32 MB PIM)

197

APPENDIX E

UNABRIDGED CARPET BAG CACHE MISS RATE RESULTS FOR THE
IMAGE UNDERSTANDING BENCHMARK

10
0

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Carpet Bag Cache Size (256−bit words)

M
is

s
R

at
e

DIS Image Understanding 2 MB Flying Carpet Bag Cache

Code

Stack

Data (General Cache)

Data (Off Chip)

Figure E.1. DIS Image Understanding Carpet Bag Cache Miss Rate (2 MB)

198

10
0

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Carpet Bag Cache Size (256−bit words)

M
is

s
R

at
e

DIS Image Understanding 4 MB Flying Carpet Bag Cache

Code

Stack

Data (General Cache)

Figure E.2. DIS Image Understanding Carpet Bag Cache Miss Rate (4 MB)

10
0

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Carpet Bag Cache Size (256−bit words)

M
is

s
R

at
e

DIS Image Understanding 8 MB Flying Carpet Bag Cache

Code

Stack

Data (General Cache)

Data (Off Chip)

Figure E.3. DIS Image Understanding Carpet Bag Cache Miss Rate (8 MB)

199

10
0

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Carpet Bag Cache Size (256−bit words)

M
is

s
R

at
e

DIS Image Understanding 16 MB Flying Carpet Bag Cache

Code

Stack

Data (General Cache)

Data (Off Chip)

Figure E.4. DIS Image Understanding Carpet Bag Cache Miss Rate (16 MB)

10
0

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Carpet Bag Cache Size (256−bit words)

M
is

s
R

at
e

DIS Image Understanding 32 MB Flying Carpet Bag Cache

Code

Stack

Data (General Cache)

Data (Off Chip)

Figure E.5. DIS Image Understanding Carpet Bag Cache Miss Rate (32 MB)

200

BIBLIOGRAPHY

[1] Anant Agarwal, Ricardo Bianchini, David Chaiken, Kirk L. Johnson, David
Kranz, John Kubiatowicz, Beng-Hong Lim, Ken Mackenzie, , and Donald Ye-
ung. The MIT Alewife Machine: Architecture and Performance. Proceedings
of the 22nd International Symposium on Computer Architecture.

[2] Robert Alverson, David Callahan, Daniel Cummings, Brian Koblenz, Allan
Porterfield, and Burton Smith. The Tera System. Tera Computer Company.

[3] C. Amza, A.L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu,
and W. Zwaenepoel. TreadMarks: Shared Memory Computing on Networks of
Workstations. IEEE Computer, Vol. 29, No. 2, February 1996.

[4] Atlantic Aerospace Electronics Corporation. Data-Intensive Systems Bench-
mark Suite Analysis and Specification, 1.0 edition, June 1999.

[5] Doug Burger. System-Level Implications of Processor-Memory Integration.
Proceedings of the 24th International Symposium on Computer Architecture,
June, 1997.

[6] Doug Burger, James R. Goodman, and Alain Kagi. Limited Bandwidth to
Affect Processor Design. IEEE Micro, November/December 1997.

[7] Doug Burger and Alain Kagi. Memory bandwidth Limitations of Future Mi-
croprocessors. Proceedings of the 23th International Symposium on Computer
Architecture, May, 1996.

[8] Michael J. Carey, David J Dewitt, and Jeffery F. Naughton. The oo7 bench-
mark. In Proceedings of the 1993 ACM-SIGMOD Conference on the Manage-
ment of Data, 1993.

[9] David Culler, Kim Keeton, Cedric Krumbein, Lok Tin Liu, Alan Mainwaring,
Rich Martin, Steve Rodrigues, Kristin Wright, and Chad Yoshikawa. Generic
Active Message Interface Specification. February 1995.

[10] W.J. Dally, J. Fiske, J Keene, R. Lethin, M. Noakes, P. Nuth, R. Davidson,
and G. Fyler. The Message-Driven Processor: A Multicomputer Processing
Node with Efficient Mechanisms. IEEE Micro, April 1992.

[11] Stefanos Damianakis, Angelos Bilas, Cezary Dubnicki, and Edward W. Fel-
ten. Client Server Computing on the SHRIMP Multicomputer. IEEE Micro,
February 1997.

201

[12] B Dembart and E.L. Yip. A 3-d Fast Multipole Method for Electromagnetics
with Multiple Levels. ISSTECH-97-004, The Boeing Company, December 1994.

[13] Duhamel and Vetterli. Fast Fourier Transforms: a Tutorial Review and State
of the Art. Signal Processing, 19, April 1990.

[14] M.A. Epton and B Dembart. Low Frequency Multipole Translation for the
Helmholtz Equation. SSGTECH-98-013, The Boeing Company, August 1994.

[15] M.A. Epton and B Dembart. Multipole Translation Theory for the 3-d Laplace
and Helmholtz Equations. SIAM Journal of Scientific Computing, 16(4), July
1995.

[16] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard.
Technical Report No. CS-93-214 (revised), University of Tennessee, April 1994.

[17] Guttman. R-Trees: a Dynamic Index Structure for Spatial Searching. In
Proceedings of ACM SIGMOID, June 1984.

[18] Linley Gwennep. Alpha 21364 to Ease Memory Bottleneck. Microprocessor
Report, October 28, 1998.

[19] J. M. Haile. Molecular Dynamics Simulation : Elementary Methods. John
Wiley & Sons, 1997.

[20] Kai Hwang. Advanced Computer Architecture: Parallelism, Scalability, Pro-
grammability. McGraw-Hill Series in Computer Science, 1993.

[21] IEEE Standard 1596-1992. The SCI Standard.

[22] Kogge, Peter M. and et al. Final Report: PIM Architecture Design and Sup-
porting Trade Studies for the HTMT Project, September 1999.

[23] Banks Kornacker. High-Concurrency Locking in R-Tree. In Proceedings of 21st
International Conference on Very Large Data Bases, September 1995.

[24] J. T. Kuehn and B. J. Smith. The Horizon Supercomputer System: Architec-
ture and Software. Proceedings of Supercomputing 1988, November 1988.

[25] Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard Simoni,
Kourosh Gharachorloo, John Chapin, David Nakahira, Joel Baxter, Mark
Horowitz, Anoop Gupta, Mendel Rosenblum, , and John Hennessy. The Stan-
ford FLASH Multiprocessor. Proceedings of the 21st International Symposium
on Computer Architecture, April 1994.

[26] Daniel Lenoski, James Laudon, Truman Joe, David Nakahira, Luis Stevens,
Anoop Gupta, and John Hennessy. The DASH Prototype: Implementation
and Performance. 19th International Symposium on Computer Architecture,
1993.

[27] Notre Dame PIM Development Group. ASAP Principles of Operation, Febru-
ary 2000.

202

[28] SPEC Open Systems Steering Committee. Spec run and reporting rules for
cpu95 suites. September 11, 1994.

[29] Mark Oskin, Frederic T. Chong, and Timothy Sherwood. Active Pages: A Com-
putation Model for Intelligent Memory. Proceedings of the 25th International
Symposium on Computer Architecture, June 1998.

[30] David Patterson, Thomans Anderson, Neal Cardwell, Richard Fromm, Kim-
berly Keeton, Christoforos Kozyrakis, Randi Thomas, and Katherine Yelick. A
Case for Intelligent DRAM: IRAM. IEEE Micro, April, 1997.

[31] David A. Patterson and John L. Hennessy. Computer Organization and Design:
The Hardware/Software Interface, 2ed. Morgan Kaufmann Publishers, 1997.

[32] Ashley Saulsbury, Tim Wilkinson, John Carter, and Anders Landin. An Argu-
ment For Simple COMA. First IEEE Symposium on High Performance Com-
puter Architecture, January 1995.

[33] Artour Stoutchinin, José Nelson Amaral, Guang R. Gao, Jim Dehnert, and
Suneel Jain. Automatic Prefetching of Induction Pointers for Software Pipelin-
ing. CAPSL Technical Memo, University of Deleware, November 1999.

[34] Sun Microsystems. Introduction to Shade, June 1997.

[35] M. R. Thistle and B. J. Smith. A Processor Architecture for Horizon. Proceed-
ings of Supercomputing 1988, November 1988.

[36] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik
Schauser. Active Messages: a Mechanism for Integrated Communication and
Computation. In Proceedings of the 19th International Symposium on Computer
Architecture. ACM Press, 1992.

[37] David H.D. Warren and Seif Haridi. The Data Diffusion Machine – A Scalable
Shared Virtual Memory Multiprocessor. 1988 International Conference on Fifth
Generation Computer Systems.

203

